1
|
Ramprosand S, Govinden-Soulange J, Ranghoo-Sanmukhiya VM, Sanan-Mishra N. miRNA, phytometabolites and disease: Connecting the dots. Phytother Res 2024; 38:4570-4591. [PMID: 39072874 DOI: 10.1002/ptr.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
miRNAs are tiny noncoding ribonucleotides that function as critical regulators of gene-expression in eukaryotes. A single miRNA may be involved in the regulation of several target mRNAs forming complex cellular networks to regulate diverse aspects of development in an organism. The deregulation of miRNAs has been associated with several human diseases. Therefore, miRNA-based therapeutics is gaining interest in the pharmaceutical industry as the next-generation drugs for the cure of many diseases. Medicinal plants have also been used for the treatment of several human diseases and their curative potential is attributed to their reserve in bioactive metabolites. A role for miRNAs as regulators of the phytometabolic pathways in plants has emerged in the recent past. Experimental studies have also indicated the potential of plant encoded secondary phytometabolites to act as cross-regulators of mammalian miRNAs and transcripts to regulate human diseases (like cancer). The evidence for this cross-kingdom gene regulation through miRNA has gathered considerable enthusiasm in the scientific field, even though there are on-going debates regarding the reproducibility and the effectiveness of these findings. In this review, we provide information to connect the medicinal and gene regulatory properties of secondary phytometabolites, their regulation by miRNAs in plants and their effects on human miRNAs for regulating downstream metabolic or pathological processes. While further extensive research initiatives and good clinical evidence are required to prove or disapprove these findings, understanding of these regulations will have important implications in the potential use of synthetic or artificial miRNAs as effective alternatives for providing health benefits.
Collapse
Affiliation(s)
- Srutee Ramprosand
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Li F, Wu J, Zhu Y, Zhang X, Wang M, Zhou S. Exploring the mechanism of dendrobine in treating metabolic associated fatty liver disease based on network pharmacology and experimental validation. Hereditas 2024; 161:17. [PMID: 38755697 PMCID: PMC11097442 DOI: 10.1186/s41065-024-00322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed. RESULTS The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels. CONCLUSION Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Feng Li
- Traditional Chinese Medicine Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Fenglin Street, Xuhui District, Shanghai, 200030, China
| | - Jialin Wu
- Nanmatou Community Health Service Center, 696 Pusan Road, Pudong New District, Shanghai, 200125, China
| | - Ye Zhu
- Xinzhuang Community Health Service Center, 115 Xinjian Road, Minhang District, Shanghai, 201199, China
| | - Xiaoyan Zhang
- Shanghai University of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Miao Wang
- Traditional Chinese Medicine Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Fenglin Street, Xuhui District, Shanghai, 200030, China
| | - Shigao Zhou
- Traditional Chinese Medicine Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Fenglin Street, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
3
|
Hui A, Chen J, Deng S, Chen Y, He X, Yang L, Zhang W, Wu Z. Phytochemical Profile of Alkaloid Extract from Dendrobium huoshanense and Inhibitory Effects against Oxidative Stress in H 2 O 2 -Induced PC12 Cells. Chem Biodivers 2024; 21:e202301332. [PMID: 38052727 DOI: 10.1002/cbdv.202301332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
This study aimed to explore the alkaloid profile of Dendrobium huoshanense and determine the potential protective effect against oxidative damage. The crude D. huoshanense alkaloid extract (DHAE) was obtained by 70 % ethanol extraction and liquid-liquid partition. DHAE contained specific alkaloid components with abundant 6-hydroxynobiline (58.15 %) and trace dendrobine (3.23 %) in the preliminary HPLC fingerprint and GC-MS analysis, which was distinguished from D. officinale or D. nobile. Subsequently, six alkaloids including 6-hydroxynobiline, 2-hydroxy dendrobine, nobilonine, dendrobine, Findlayines D and trans-dendrochrysanine were identified in the purified DHAE (namely DHSAE-3, DHSAE-3') via further solid phase extraction coupled with UPLC-MS/MS analysis. Meanwhile, pretreatment with DHAE or DHSAE (0.5, 5 μg/mL) increased cell viability by 14.0-57.4 % compared to that of H2 O2 -induced PC12 Model cells. Among them, 5 μg/mL DHSAE-3-treated cells displayed a pronounced reversion than the positive vitamin E (p<0.01). Furthermore, a clear cellular morphological restoration and 38.4 % reduction in intracellular reactive oxidative species level were achieved. Our findings suggest that D. huoshanense has a characteristic alkaloid profile represented by abundant 6-hydroxynobiline, and DHAEs exhibit obvious protection against oxidative neuronal damage. Overall, this study indicates that DHAEs might be used to inhibit oxidative stress and provide a source to develop novel neuroprotective drugs.
Collapse
Affiliation(s)
- Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Jingchao Chen
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Yan Chen
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Jiulong Road 111, Hefei, 230601, China
| | - Xianglin He
- Huoshan County Changchong Medical Materials Development Co., Ltd, Lu'an, 237200, China
| | - Li Yang
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| |
Collapse
|
4
|
Zhao M, Zhao Y, Yang Z, Ming F, Li J, Kong D, Wang Y, Chen P, Wang M, Wang Z. Metabolic Pathway Engineering Improves Dendrobine Production in Dendrobium catenatum. Int J Mol Sci 2023; 25:397. [PMID: 38203567 PMCID: PMC10778673 DOI: 10.3390/ijms25010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5'-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value.
Collapse
Affiliation(s)
- Meili Zhao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Zhenyu Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Demin Kong
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yu Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Peng Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Zhicai Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
5
|
Zhigzhitzhapova SV, Dylenova EP, Zhigzhitzhapov BV, Goncharova DB, Tykheev ZA, Taraskin VV, Anenkhonov OA. Essential Oils of Artemisia frigida Plants (Asteraceae): Conservatism and Lability of the Composition. PLANTS (BASEL, SWITZERLAND) 2023; 12:3422. [PMID: 37836162 PMCID: PMC10574723 DOI: 10.3390/plants12193422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plants of arid regions have adapted to harsh environments during the long span of their evolution and have developed a set of features necessary for their survival in water-limited conditions. Artemisia frigida Willd. (Asteraceae) is a widely distributed species possessing significant cenotic value in steppe ecosystems due to its high frequency and abundance. This study examines different patterns of formation of essential oil composition in A. frigida plants under the influence of heterogeneous factors, including climate and its integral characteristics (HTC, Cextr, SPEI and others). The work is based on the results of our research conducted in Russia (Republic of Buryatia, Irkutsk region), Mongolia, and China, from 1998 to 2021. A total of 32 constant compounds have been identified in the essential oil of A. frigida throughout its habitat range in Eurasia, from Kazakhstan to Qinghai Province, China. Among them, camphor, 1,8-cineol and bornyl acetate are the dominant components, contained in 93-95% of the samples. Among the sesquiterpenoids, germacrene D is the dominant component in 67% of the samples. The largest variability within the composition of the essential oils of A. frigida is associated with significant differences in the climatic parameters when plants grow in high-altitude and extrazonal conditions.
Collapse
Affiliation(s)
- Svetlana V. Zhigzhitzhapova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Elena P. Dylenova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Bato V. Zhigzhitzhapov
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Danaya B. Goncharova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Zhargal A. Tykheev
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Vasiliy V. Taraskin
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Oleg A. Anenkhonov
- Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia;
| |
Collapse
|
6
|
Swainson NM, Pengoan T, Khonsap R, Meksangsee P, Hagn G, Gerner C, Aramrak A. In vitro inhibitory effects on free radicals, pigmentation, and skin cancer cell proliferation from Dendrobium hybrid extract: A new plant source of active compounds. Heliyon 2023; 9:e20197. [PMID: 37809523 PMCID: PMC10559953 DOI: 10.1016/j.heliyon.2023.e20197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Orchidaceae are diverse plants whose bioactive compounds have various biological activities. New hybrids of Dendrobium have been generated to gain characteristics shared with their ancestors. Dendrobium Pearl Vera (designated as DH) is derived from parents used for dermatological treatments and cosmetics. However, the phytoconstituents and biological properties of DH have not been reported. The current study investigated extracts from DH plants using four solvents (water, methanol, ethanol, or 2-propanol). The propanolic extract (DH-P) contained the highest phenolic and flavonoid contents, along with a high scavenging performance for free radicals. In total, 25 tentative constituents in the DH-P matrix were identified, consisting of amino acids, nucleotides, and three types of secondary metabolites: furan, phenolics, and alkaloids. The DH-P inhibited human tyrosinase in vitro in a concentration-dependent manner of the phenolic content. Furthermore, there was no significant difference between DH-P with 10 μg/ml phenolic content and 0.75 mM kojic acid (a commercial whitening agent) on the inhibition of human tyrosinase. Incubation with DH-P containing at least 15 μg/ml phenolic content greatly inhibited the proliferation of human melanoma; however, the cell viability was not affected by the phenolic content at 5 μg/ml or less. The half-maximal inhibitory concentration (IC50) of the phenolic content in DH-P on melanoma viability was 12.90 ± 1.04 μg/ml. Melanin production in vivo by human melanoma incubated with 5 μg/ml phenolic content in DH-P was reduced significantly, compared to 2.5 μg/ml phenolic content in DH-P, 100 μg/ml arbutin, and in control. The identified components, including 5-hydroxymethyl-2-furaldehyde, salicylic acid, nicotinamide, acetophenone, cytidine, adenosine, proline, or valine, have been reported to be associated with depigmentation, antioxidant, and anticancer. This research revealed, for the first time, the tentative phytoconstituents of Dendrobium Pearl Vera and their biological activities, thus demonstrating the potential use of DH-P in dermal applications.
Collapse
Affiliation(s)
| | - Thanyawan Pengoan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Thailand
| | - Rungpailin Khonsap
- Department of Biochemistry, Faculty of Science, Kasetsart University, Thailand
| | | | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Attawan Aramrak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Thailand
| |
Collapse
|
7
|
Pan H, Chen Y, Zhao J, Huang J, Shu N, Deng H, Song C. In-depth analysis of large-scale screening of WRKY members based on genome-wide identification. Front Genet 2023; 13:1104968. [PMID: 36699467 PMCID: PMC9868916 DOI: 10.3389/fgene.2022.1104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
With the rapid advancement of high-throughput sequencing technology, it is now possible to identify individual gene families from genomes on a large scale in order to study their functions. WRKY transcription factors are a key class of regulators that regulate plant growth and abiotic stresses. Here, a total of 74 WRKY genes were identified from Dendrobium officinale Kimura et Migo genome. Based on the genome-wide analysis, an in-depth analysis of gene structure and conserved motif was performed. The phylogenetic analysis indicated that DoWRKYs could be classified into three main groups: I, II, and III, with group II divided into five subgroups: II-a, II-b, II-c, II-d, and II-e. The sequence alignment indicated that these WRKY transcriptional factors contained a highly conserved WRKYGQK heptapeptide. The localization analysis of chromosomes showed that WRKY genes were irregularly distributed across several chromosomes of D. officinale. These genes comprised diverse patterns in both number and species, and there were certain distinguishing motifs among subfamilies. Moreover, the phylogenetic tree and chromosomal location results indicated that DoWRKYs may have undergone a widespread genome duplication event. Based on an evaluation of expression profiles, we proposed that DoWRKY5, 54, 57, 21, etc. may be involved in the transcriptional regulation of the JA signaling pathway. These results provide a scientific reference for the study of DoWRKY family genes.
Collapse
Affiliation(s)
- Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jingyi Zhao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jie Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Nana Shu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| |
Collapse
|
8
|
Zhai D, Lv X, Chen J, Peng M, Cai J. Recent Research Progress on Natural Stilbenes in Dendrobium Species. Molecules 2022; 27:molecules27217233. [PMID: 36364058 PMCID: PMC9654415 DOI: 10.3390/molecules27217233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, and many of them have been utilized as a traditional Chinese medicine (TCM) for thousands of years in China. In the last few decades, constituents with great chemical diversity were isolated from Dendrobium, and a wide range of biological activities were detected, either for crude extracts or for pure compounds. Stilbene compound is one of the primary active constituents in the genus Dendrobium. At present, 267 stilbene compounds with clarified molecular structures have been extracted and isolated from 52 species of Dendrobium, including 124 phenanthrenes and 143 bibenzyls. At the same time, activity studies have indicated that 157 compounds have pharmaceutical activity. Among them, most of the compounds showed antitumor activity, followed by antioxidant, anti-inflammatory and anti-α-glucosidase inhibitory activities. Additionally, 54 compounds have multiple pharmacological activities, such as confusarin (14), 2,4,7-trihydroxy-9,10-dihydro-phenanthrene (43), moscatilin (148), gigantol (150) and batatasin III (151). This review summarizes current knowledge about the chemical composition of stilbene, bioactivities and pharmacologic effects in 52 species of Dendrobium. We also expect to provide a reference for further research, development and utilization of stilbene constituents in the Dendrobium genus.
Collapse
Affiliation(s)
- Denghui Zhai
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education of China, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaofa Lv
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education of China, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingmei Chen
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education of China, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minwen Peng
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education of China, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinyan Cai
- Key Laboratory of Glucolipid Metabolic Disorder of Ministry of Education of China, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
9
|
Yi S, Lu H, Tian C, Xu T, Song C, Wang W, Wei P, Gu F, Liu D, Cai Y, Han B. Selection of Suitable Reference Genes for Gene Expression Normalization Studies in Dendrobium huoshanense. Genes (Basel) 2022; 13:genes13081486. [PMID: 36011396 PMCID: PMC9408602 DOI: 10.3390/genes13081486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobium huoshanense is a kind of precious herb with important medicinal and edible value in China, which is widely used in traditional Chinese medicine for various diseases. Recent studies have paid close attention to the genetic expression of the biosynthetic pathway of the main active components (polysaccharides, alkaloids, and flavonoids), and real-time polymerase chain reaction (qPCR) is one of the most widely used methods for doing so. However, so far, no reference gene selections have been reported in D. huoshanense. In this study, 15 reference gene candidates (GAPDH, eIF, EF-1α, PP2A, UBCE, RPL5, TBP, APT1, MDH, PTBP3, PEPC, CYP71, NCBP2, TIP41, and F-box) were selected and evaluated for their expression stability in D. huoshanense under various experimental conditions, including in different tissues (root, stem, and leaf), abiotic stresses (oxidative, drought, cold, and UV), and hormone treatment (methyl jasmonate) using three statistical programs (geNorm, NormFinder, and BestKeeper). Then, the RefFinder program was employed to comprehensively validate the stability of the selected reference genes. Finally, the expression profiles of the CESA and GMPP genes were further analyzed, and these results indicated that TBP, NCBP2, and CYP71 were the top three most stable reference genes after comprehensive comparison, which could be used as stable reference genes for normalizing the genes expression in D. huoshanense. This study described here provides the first data regarding on reference gene selection in D. huoshanense, which will be extremely beneficial for future research on the gene expression normalization in D. huoshanense.
Collapse
Affiliation(s)
- Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Haibo Lu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Chuanjun Tian
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Tao Xu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Cheng Song
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Wei Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Peipei Wei
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Fangli Gu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Dong Liu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.C.); (B.H.); Tel.: +86-564-3307060 (B.H.)
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
- Correspondence: (Y.C.); (B.H.); Tel.: +86-564-3307060 (B.H.)
| |
Collapse
|
10
|
Song C, Zhang Y, Manzoor MA, Li G. Identification of alkaloids and related intermediates of Dendrobium officinale by solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry. FRONTIERS IN PLANT SCIENCE 2022; 13:952051. [PMID: 35991437 PMCID: PMC9386266 DOI: 10.3389/fpls.2022.952051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 05/05/2023]
Abstract
Jasmonate (JA) signaling plays a pivotal role in plant stress responses and secondary metabolism. Many studies have demonstrated that JA effectively induce the expressions of alkaloid biosynthetic genes in various plants, which rendered to the accumulation of alkaloid to counteract stresses. Despite the multiple roles of JA in the regulation of plant growth and different stresses, less studied involved in the regulatory role of JA in Dendrobium officinale alkaloids. A strategy for the rapid identification of alkaloid and the intermediates of D. officinale was established based on a solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry method. By using SPE-LC-MS/MS method, the potential compounds were tentatively identified by aligning the accurate molecular weight with the METLIN and Dictionary of Natural Products databases. The chemical structures and main characteristic fragments of the potential compounds were further confirmed by retrieving the multistage mass spectra from the MassBank and METLIN databases. The Mass Frontier software was used to speculate the fragmentation pathway of the identified compounds. Seven alkaloids were separated and identified from D. officinale, which were mainly classified into five types (tropane alkaloids, tetrahydroisoquinoline alkaloids, quinolizidine alkaloids, piperidine alkaloids, and spermidine alkaloids). Besides the alkaloids, forty-nine chemical substances, including guanidines, nucleotides, dipeptides, sphingolipids and nitrogen-containing glucosides, were concurrently identified. These findings gives the composition of chemicals currently found in D. officinale, which could provide the scientific method for the identification of alkaloids in other Dendrobium plants.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- *Correspondence: Cheng Song,
| | - Yunpeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Guohui Li,
| |
Collapse
|