1
|
Zhou Y, Yang H, Liu E, Liu R, Alam M, Gao H, Gao G, Zhang Q, Li Y, Xiong L, He Y. Fine Mapping of Five Grain Size QTLs Which Affect Grain Yield and Quality in Rice. Int J Mol Sci 2024; 25:4149. [PMID: 38673733 PMCID: PMC11050437 DOI: 10.3390/ijms25084149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (H.Y.); (E.L.); (R.L.); (M.A.); (H.G.); (G.G.); (Q.Z.); (Y.L.); (L.X.)
| |
Collapse
|
2
|
Awale P, McSteen P. Hormonal regulation of inflorescence and intercalary meristems in grasses. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102451. [PMID: 37739867 DOI: 10.1016/j.pbi.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.
Collapse
Affiliation(s)
- Prameela Awale
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Kabange NR, Alibu S, Kwon Y, Lee SM, Oh KW, Lee JH. Genome-wide association study (GWAS) with high-throughput SNP chip DNA markers identified novel genetic factors for mesocotyl elongation and seedling emergence in rice ( Oryza sativa L.) using multiple GAPIT models. Front Genet 2023; 14:1282620. [PMID: 38054028 PMCID: PMC10694456 DOI: 10.3389/fgene.2023.1282620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
This study employed a joint strategy high-density SNP Chip DNA markers and multiple Genome Association and Prediction Integrated Tool (GAPIT) models [(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), Fixed and random model Circulating Probability Uniform (FarmCPU), General Linear Model (GLM), and Settlement of Mixed Linear Model (MLM) Under Progressively Exclusive Relationship (SUPER)], to investigate novel genetic factors controlling mesocotyl elongation and seedling emergence for direct-seeded rice. Genotype data (230,526 SNP Chip DNA makers) of 117 doubled haploid lines (derived from a cross between 93-11 (Oryza sativa L. ssp. indica) and Milyang352 (O. sativa L. ssp. japonica) were used to perform a Genome-Wide Association Study (GWAS). Results revealed the association between five (5) topmost significant SNP markers, of which number two [AX-155741269, Chr2: 15422406 bp, and AX-155200917, Chr7: 23814085 bp, explaining 37.5% and 13.8% of the phenotypic variance explained (PVE)] are linked to the mesocotyl elongation loci, while three (AX-282097034 and AX-283652873, Chr9: 9882817 bp and 1023383 bp, PVE 64.5%, and 20.2%, respectively, and AX-154356231, Chr1: 17413989 bp, PVE 21.1%) are tightly linked to the loci controlling seedling emergence. The qMEL2-1 and qSEM9-1 are identified as major QTLs explaining 37.5% and 64.5% of the PVE for mesocotyl elongation and seedling emergence, respectively. The AX-282097034 (Chr9: 9882817 bp) was co-detected by four GAPIT models (BLINK, FarmCPU, SUPER, and GLM), while AX-155741269 was co-detected by BLINK and SUPER. Furthermore, a high estimated heritability (Mesocotyl elongation: h2 = 0.955; seedling emergence: h2 = 0.863; shoot length: h2 = 0.707) was observed. Genes harbored by qMEL2-1 and qSEM9-1 have interesting annotated molecular functions that could be investigated through functional studies to uncover their roles during mesocotyl elongation and seedling emergence events in rice. Furthermore, the presence of genes encoding transcription factors, growth- and stress response, or signaling-related genes would suggest that mesocotyl elongation and seedling emergence from deep direct-seeded rice might involve an active signaling cascade and transport of molecules, which could be elucidated through functional analysis. Likewise, genomic selection analysis suggested markers useful for downstream marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Simon Alibu
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organisation (NARO), Entebbe, Uganda
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ki-Won Oh
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| |
Collapse
|
4
|
Li Z, Wang T, Yun L, Ren X, Wang Y, Shi F. Association Analysis of Tiller-Related Traits with EST-SSR Markers in Psathyrostachys juncea. Genes (Basel) 2023; 14:1970. [PMID: 37895319 PMCID: PMC10606050 DOI: 10.3390/genes14101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Psathyrostachys juncea is a long-lived perennial Gramineae grass with dense basal tillers and soft leaves. It is used widely in cold and dry areas of Eurasia and North America to establish grazing pasture and is even used as an ideal plant for revegetation and ecological restoration. Plant architecture, especially tillering traits, is critical for bunch grasses in breeding programs, and these traits in plants are mostly quantitative traits. In this study, the genetic diversity, population structure, and linkage disequilibrium of 480 individual lines were analyzed using 127 pairs of the EST-SSR marker, and a significant association between ten plant-architecture-related traits of P. juncea and molecular markers was found. The results of the genetic diversity analysis showed that the number of observed alleles was 1.957, the number of effective alleles was 1.682, Shannon's information index was 0.554, observed heterozygosity was 0.353, expected heterozygosity was 0.379, and the polymorphism information content was 0.300. A total of 480 individual lines were clustered into five groups based on population genetic structure, principal coordinate analysis, and unweighted pair group method with arithmetic mean analysis (UPGMA). The linkage disequilibrium coefficient (r2) was between 0.00 and 0.68, with an average of 0.04, which indicated a relatively low level of linkage disequilibrium among loci. The results of the association analysis revealed 55 significant marker-trait associations (MTA). Moreover, nine SSR markers were associated with multiple traits. This study provides tools with promising applications in the molecular selection and breeding of P. juncea germplasm.
Collapse
Affiliation(s)
- Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Tian Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
- Key Laboratory of Grassland Resources Ministry of Education, Hohhot 010010, China
| | - Xiaomin Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Yong Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| |
Collapse
|
5
|
Huang Z, Ye J, Zhai R, Wu M, Yu F, Zhu G, Wang Z, Zhang X, Ye S. Comparative Transcriptome Analysis of the Heterosis of Salt Tolerance in Inter-Subspecific Hybrid Rice. Int J Mol Sci 2023; 24:ijms24032212. [PMID: 36768538 PMCID: PMC9916944 DOI: 10.3390/ijms24032212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is one of the major abiotic stresses limiting rice growth. Hybrids outperform their parents in salt tolerance in rice, while its mechanism is not completely understood. In this study, a higher seedling survival was observed after salt treatment in an inter-subspecific hybrid rice, Zhegengyou1578 (ZGY1578), compared with its maternal japonica Zhegeng7A (ZG7A) and paternal indica Zhehui1578 (ZH1578). A total of 2584 and 3061 differentially expressed genes (DEGs) with at least twofold changes were identified between ZGY1578 and ZG7A and between ZGY1578 and ZH1578, respectively, in roots under salt stress using the RNA sequencing (RNA-Seq) approach. The expressions of a larger number of DEGs in hybrid were lower or higher than those of both parents. The DEGs associated with transcription factors, hormones, and reactive oxygen species (ROS)-related genes might be involved in the heterosis of salt tolerance. The expressions of the majority of transcription factors and ethylene-, auxin-, and gibberellin-related genes, as well as peroxidase genes, were significantly higher in the hybrid ZGY1578 compared with those of both parents. The identified genes provide valuable clues to elucidate the heterosis of salt tolerance in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Zhibo Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (X.Z.); (S.Y.)
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (X.Z.); (S.Y.)
| |
Collapse
|
6
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|