1
|
Abdullaev F, Pirogova P, Vodeneev V, Sherstneva O. Chlorophyll Fluorescence in Wheat Breeding for Heat and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2778. [PMID: 39409648 PMCID: PMC11478672 DOI: 10.3390/plants13192778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The constantly growing need to increase the production of agricultural products in changing climatic conditions makes it necessary to accelerate the development of new cultivars that meet the modern demands of agronomists. Currently, the breeding process includes the stages of genotyping and phenotyping to optimize the selection of promising genotypes. One of the most popular phenotypic methods is the pulse-amplitude modulated (PAM) fluorometry, due to its non-invasiveness and high information content. In this review, we focused on the opportunities of using chlorophyll fluorescence (ChlF) parameters recorded using PAM fluorometry to assess the state of plants in drought and heat stress conditions and predict the economically significant traits of wheat, as one of the most important agricultural crops, and also analyzed the relationship between the ChlF parameters and genetic markers.
Collapse
Affiliation(s)
| | | | | | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Groli EL, Frascaroli E, Maccaferri M, Ammar K, Tuberosa R. Dissecting the effect of heat stress on durum wheat under field conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1393349. [PMID: 39006958 PMCID: PMC11239346 DOI: 10.3389/fpls.2024.1393349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
Introduction Heat stress negatively affects wheat production in several ways, mainly by reducing growth rate, photosynthetic capacity and reducing spike fertility. Modeling stress response means analyzing simultaneous relationships among traits affecting the whole plant response and determinants of grain yield. The aim of this study was to dissect the diverse impacts of heat stress on key yield traits and to identify the most promising sources of alleles for heat tolerance. Methods We evaluated a diverse durum wheat panel of 183 cultivars and breeding lines from worldwide, for their response to long-term heat stress under field conditions (HS) with respect to non stress conditions (NS), considering phenological traits, grain yield (GY) and its components as a function of the timing of heat stress and climatic covariates. We investigated the relationships among plant and environmental variables by means of a structural equation model (SEM) and Genetic SEM (GSEM). Results Over two years of experiments at CENEB, CIMMYT, the effects of HS were particularly pronounced for the normalized difference vegetation index, NDVI (-51.3%), kernel weight per spike, KWS (-40.5%), grain filling period, GFP (-38.7%), and GY (-56.6%). Average temperatures around anthesis were negatively correlated with GY, thousand kernel weight TKW and test weight TWT, but also with spike density, a trait determined before heading/anthesis. Under HS, the correlation between the three major determinants of GY, i.e., fertile spike density, spike fertility and kernel size, were of noticeable magnitude. NDVI measured at medium milk-soft dough stage under HS was correlated with both spike fertility and grain weight while under NS it was less predictive of grain weight but still highly correlated with spike fertility. GSEM modeling suggested that the causal model of performance under HS directly involves genetic effects on GY, NDVI, KWS and HD. Discussion We identified consistently suitable sources of genetic resistance to heat stress to be used in different durum wheat pre-breeding programs. Among those, Desert Durums and CIMMYT'80 germplasm showed the highest degree of adaptation and capacity to yield under high temperatures and can be considered as a valuable source of alleles for adaptation to breed new HS resilient cultivars.
Collapse
Affiliation(s)
- Eder Licieri Groli
- Department of Agricultural and Food Sciences, DISTAL, University of Bologna, Bologna, Italy
| | - Elisabetta Frascaroli
- Department of Agricultural and Food Sciences, DISTAL, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, DISTAL, University of Bologna, Bologna, Italy
| | - Karim Ammar
- International Maize and Wheat Improvement Center, CIMMYT, El Batán, Mexico
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, DISTAL, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Chang-Brahim I, Koppensteiner LJ, Beltrame L, Bodner G, Saranti A, Salzinger J, Fanta-Jende P, Sulzbachner C, Bruckmüller F, Trognitz F, Samad-Zamini M, Zechner E, Holzinger A, Molin EM. Reviewing the essential roles of remote phenotyping, GWAS and explainable AI in practical marker-assisted selection for drought-tolerant winter wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1319938. [PMID: 38699541 PMCID: PMC11064034 DOI: 10.3389/fpls.2024.1319938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods. Furthermore, MAS relies on knowledge of marker-trait associations, commonly obtained through genome-wide association studies (GWAS), to understand complex traits such as drought tolerance, including yield components and phenology. However, GWAS has limitations that artificial intelligence (AI) has been shown to partially overcome. Additionally, AI and its explainable variants, which ensure transparency and interpretability, are increasingly being used as recognised problem-solving tools throughout the breeding process. Given these rapid technological advancements, this review provides an overview of state-of-the-art methods and processes underlying each MAS, from phenotyping, genotyping and association analyses to the integration of explainable AI along the entire workflow. In this context, we specifically address the challenges and importance of breeding winter wheat for greater drought tolerance with stable yields, as regional droughts during critical developmental stages pose a threat to winter wheat production. Finally, we explore the transition from scientific progress to practical implementation and discuss ways to bridge the gap between cutting-edge developments and breeders, expediting MAS-based winter wheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Ignacio Chang-Brahim
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Lorenzo Beltrame
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Gernot Bodner
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Anna Saranti
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jules Salzinger
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Phillipp Fanta-Jende
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Christoph Sulzbachner
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Felix Bruckmüller
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Friederike Trognitz
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Elisabeth Zechner
- Verein zur Förderung einer nachhaltigen und regionalen Pflanzenzüchtung, Zwettl, Austria
| | - Andreas Holzinger
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ding Y, Fang H, Gao Y, Fan G, Shi X, Yu S, Ding S, Huang T, Wang W, Song J. Genome-wide association analysis of time to heading and maturity in bread wheat using 55K microarrays. FRONTIERS IN PLANT SCIENCE 2023; 14:1296197. [PMID: 38107003 PMCID: PMC10722194 DOI: 10.3389/fpls.2023.1296197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
To investigate the genetic mechanisms underlying the reproductive traits (time to flowering and maturity) in wheat and identify candidate genes associated, a phenotypic analysis was conducted on 239 wheat accessions (lines) from around the world. A genome-wide association study (GWAS) of wheat heading and maturity phases was performed using the MLM (Q+K) model in the TASSLE software, combined with the Wheat 55K SNP array. The results revealed significant phenotypic variation in heading and maturity among the wheat accessions across different years, with coefficients of variation ranging from 0.96% to 1.97%. The phenotypic data from different years exhibited excellent correlation, with a genome-wide linkage disequilibrium (LD) attenuation distance of 3 Mb. Population structure analysis, evolutionary tree analysis, and principal component analysis indicated that the 239 wheat accessions formed a relatively homogeneous natural population, which could be divided into three subgroups. The GWAS results identified a total of 293 SNP marker loci that were significantly associated with wheat heading and maturity stages (P ≤ 0.001) in different environments. Among them, nine stable SNP marker loci were consistently detected in multiple environments. These marker loci were distributed on wheat chromosomes 1A、1B、2D、3A、5B、6D and 7A. Each individual locus explained 4.03%-16.06% of the phenotypic variation. Furthermore, through careful analysis of the associated loci with large phenotypic effect values and stable inheritance, a total of nine candidate genes related to wheat heading and maturity stages were identified. These findings have implications for molecular marker-assisted selection breeding programs targeting specific wheat traits at the heading and maturity stages. In summary, this study conducted a comprehensive GWAS of wheat heading and maturity phases, revealing significant associations between genetic markers and key developmental stages in wheat. The identification of candidate genes and marker loci provides valuable information for further studies on wheat breeding and genetic improvement targeted at enhancing heading and maturity traits.
Collapse
Affiliation(s)
- Yindeng Ding
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Hui Fang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yonghong Gao
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Guiqiang Fan
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xiaolei Shi
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Shan Yu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Sunlei Ding
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Tianrong Huang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Wei Wang
- Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Jikun Song
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
5
|
Romero-Reyes A, Hernandez-Leon SG, Leyva-Carrillo L, Yepiz-Plascencia G, Reynolds MP, Paul MJ, Heuer S, Valenzuela-Soto EM. An efficient triose phosphate synthesis and distribution in wheat provides tolerance to higher field temperatures. Biochem J 2023; 480:1365-1377. [PMID: 37589484 DOI: 10.1042/bcj20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
High temperatures in the field hinder bread wheat high-yield production, mainly because of the adverse effects of heat over photosynthesis. The Yaqui Valley, the main wheat producer region in Mexico, is a zone prone to have temperatures over 30°C. The aim of this work was to test the flag leaf photosynthetic performance in 10 bread wheat genotypes grown under high temperatures in the field. The study took place during two seasons (2019-2020 and 2020-2021). In each season, control seeds were sown in December, while heat-stressed were sown in late January to subject wheat to heat stress (HS) during the grain-filling stage. HS reduced Grain yield from 20 to 58% in the first season. HS did not reduce chlorophyll content and light-dependent reactions were unaffected in any of the tested genotypes. Rubisco, chloroplast fructose 1,6-biphosphatase (FBPase), and sucrose phosphate synthase (SPS) activities were measured spectrophotometrically. Rubisco activity did not decrease under HS in any of the genotypes. FBPase activity was reduced by HS indicating that triose phosphate flux to starch synthesis was reduced, while SPS was not affected, and thus, sucrose synthesis was maintained. HS reduced aerial biomass in the 10 chosen genotypes. Genotypes SOKWB.1, SOKWB.3, and BORLAUG100 maintained their yield under HS, pointing to a potential success in their introduction in this region for breeding heat-tolerant bread wheat.
Collapse
Affiliation(s)
- Andrea Romero-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., G.E. Astiazarán Rosas 46, Hermosillo 83304, Sonora, México
| | - Sergio G Hernandez-Leon
- Centro de Investigación en Alimentación y Desarrollo A.C., G.E. Astiazarán Rosas 46, Hermosillo 83304, Sonora, México
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo A.C., G.E. Astiazarán Rosas 46, Hermosillo 83304, Sonora, México
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo A.C., G.E. Astiazarán Rosas 46, Hermosillo 83304, Sonora, México
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, 56237 Texcoco, México
| | - Matthew J Paul
- Department of Plant Science, Rothamsted Research, Harpenden AL5 2JQ, U.K
| | - Sigrid Heuer
- Pre-Breeding Department, National Institute of Agricultural Botany (NIAB), Cambridge, U.K
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., G.E. Astiazarán Rosas 46, Hermosillo 83304, Sonora, México
| |
Collapse
|
6
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|