1
|
Biswas S, Chatterjee R, Rai U, Jana SK, Mukhopadhyay M. Proclaiming Plant Growth-Promoting and Antifungal Properties of Pseudomonas lurida and Bacillus velezensis Isolated from Rhododendrons of Darjeeling Hills. Curr Microbiol 2024; 81:393. [PMID: 39369364 DOI: 10.1007/s00284-024-03900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Endophytes have drawn attentions due to their effectiveness in providing benefits to host and non-host plants. In this study endophytic bacteria were isolated from stem and leaf samples of medicinally important plants Rhododendron griffithianum Wight and Rhododendron arboreum Smith subsp. cinnamomeum (Wall. ex G. Don) grown at higher altitudes of Darjeeling, India. Two endophytic bacteria, Pseudomonas lurida RGDS03 and Bacillus velezensis RCDL12 were identified based on 16S rRNA gene sequencing analysis. The endophytes exhibited indole acetic acid (IAA), gibberellic acid (GA), siderophore production, phosphate solubilization, nitrogen-fixing abilities, though B. velezensis RCDL12 showed superior production of IAA (126.04 ± 0.40 µg/mL), GA (241.00 ± 0.44 µg/mL), and phosphate (74.4 ± 0.41 µg/mL) solubilization as compared to P. lurida RGDS03. Purity of extracted IAA from these two endophytes was confirmed by HPLC and LC-MS analysis. In this study, P. lurida RGDS03 inhibited mycelial growth of two tested phytopathogens Phytophthora sp. and Pestalotiopsis sp. of broad host range. However, only against Pestalotiopsis sp. did B. velezensis RCDL12 exhibit antifungal activity. Study was conducted on growth promotion capabilities of isolates on rice and mung bean seedlings. P. lurida RGDS03, B. velezensis RCDL12 and consortium of both the strains reported with promising growth promotion on both rice (85-97%) and mung bean (86-99%) in terms of their seed germination, vegetative growth (root and shoot length, fresh and dry weight), and chlorophyll content as compared to the control plants (untreated). This study has emphasized growth-promoting and biocontrol activities of endophytic bacteria from rhododendrons, and application to enhance crop development for sustainable agriculture.
Collapse
Affiliation(s)
- Shreyasi Biswas
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India
| | - Rajeshwari Chatterjee
- Deapartment of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Upakar Rai
- Department of Botany, St Joseph's College, Darjeeling, West Bengal, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - Mahuya Mukhopadhyay
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Lorch MG, Valverde C, Agaras BC. Variability in Maize Seed Bacterization and Survival Correlating with Root Colonization by Pseudomonas Isolates with Plant-Probiotic Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2130. [PMID: 39124248 PMCID: PMC11314135 DOI: 10.3390/plants13152130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance.
Collapse
Affiliation(s)
- Melani G. Lorch
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Claudio Valverde
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Betina C. Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
3
|
Villafañe DL, Maldonado RA, Bianchi JS, Kurth D, Gramajo H, Chiesa MA, Rodríguez E. Streptomyces N2A, an endophytic actinobacteria that promotes soybean growth and increases yield and seed quality under field conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112073. [PMID: 38522657 DOI: 10.1016/j.plantsci.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Sustainable agriculture based on the use of soil-beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCA) is gaining great consideration to reduce the use of agrochemicals for crop production. With this aim, in this study, a total of 78 actinobacteria were isolated from the rhizosphere and endosphere of soybean roots. Based on in vitro compatibility with Bradyrhizobium japonicum, the ability to produce phytohormones, siderophores, exo-enzymes, antifungal compounds and phosphate solubilization (PGPR traits), two endophytic strains, named N2A and N9, were selected to evaluate their effects on plant growth and development at greenhouse and field conditions. Greenhouse trials showed significantly promoted seedling emergence compared to control and the conventional fungicide treatment. Analysis of growth and development associated parameters at reproductive stages and maturity at greenhouse, but also and most importantly, in field experiments showed significant improvements. Plant biomass, node number, pod number, and consequently yield, were higher in plants previously treated with N2A and co-inoculated with B. japonicum compared to the conventional seed treatment. Furthermore, a significant increase in health status and vigor was observed for seeds harvested from the N2A-treated plants in relation to seeds obtained from the conventional treatment. Thus, we demonstrated that Streptomyces sp. N2A can replace traditional chemical fungicides to protect the seed during germination, allowing good implantation, but also, stimulating the growth and development of soybean crop increasing yield and seed quality at field conditions. Altogether, this supports the potential use of Streptomyces N2A as a PGPR for soybean crop production more efficiently and sustainably.
Collapse
Affiliation(s)
- David L Villafañe
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Rodrigo A Maldonado
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Julieta S Bianchi
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Hugo Gramajo
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - María Amalia Chiesa
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina.
| | - Eduardo Rodríguez
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
4
|
Wang Y, Dong W, Chu L, Zhao H, He L, Sheng X. A combination of proteomics, genetics, and physiology provides insights into the acid-tolerance phenotype of Pseudomonas pergaminensis F77. Microbiol Res 2024; 278:127545. [PMID: 37952350 DOI: 10.1016/j.micres.2023.127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Acid tolerance is crucial for the effective and persistent mineral weathering by acid-producing bacteria. Here, the molecular basis of the acid tolerance of mineral-weathering Pseudomonas pergaminensis F77 was identified using proteomics analysis of the strain under acid stress. Then, the acid tolerance of strain F77 and its mutants with deletion of the acid tolerance-related genes orf03767, mcp, resR, nueR, yegD, and fxsA, which are involved in the two-component systems, DNA repair, nucleotide binding, and membrane parts, were compared. Finally, the acid tolerance-related physiological mechanisms of strain F77 and its mutants F77ΔnueR and F77ΔresR under acidic conditions were characterized. The significantly upregulated proteins in the acid-adapted and acid-challenged strain F77 included the proteins involved in metabolic pathways associated with ATPase, membrane components, organic acid transmembrane transporters, response to stimulus, nucleotide binding, ABC transporters, and two-component systems. The cell numbers decreased by 24-100% at pH ≤ 4.50, while the membrane fluidity increased by 22-61% at pH ≤ 5.50 for the mutants F77ΔnueR and F77ΔresR, compared with that of strain F77. The intracellular H+-ATPase activities decreased by 29-33% for the mutant F77ΔnueR at pH ≤ 4.50% and 33-79% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00); meanwhile, the ratios of intracellular NAD+/NADH decreased by 71-91% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00), compared with that of strain F77. Furthermore, the intracellular putrescine concentrations were reduced by 40-70% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00) compared with that of strain F77. Our findings suggested that multiple proteins and metabolic pathways were associated with bacterial acid tolerance and revealed that nueR and resR were involved in acid tolerance based on their modulation of multiple acid tolerance-related physiological functions in strain F77.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lingfeng Chu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Shade A. Microbiome rescue: directing resilience of environmental microbial communities. Curr Opin Microbiol 2023; 72:102263. [PMID: 36657335 DOI: 10.1016/j.mib.2022.102263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023]
Abstract
Earth's climate crisis threatens to disrupt ecosystem services and destabilize food security. Microbiome management will be a crucial component of a comprehensive strategy to maintain stable microbinal functions for ecosystems and plants in the face of climate change. Microbiome rescue is the directed, community-level recovery of microbial populations and functions lost after an environmental disturbance. Microbiome rescue aims to propel a resilience trajectory for community functions. Rescue can be achieved via demographic, functional, adaptive, or evolutionary recovery of disturbance-sensitive populations. Various ecological mechanisms support rescue, including dispersal, reactivation from dormancy, functional redundancy, plasticity, and diversification, and these mechanisms can interact. Notably, controlling microbial reactivation from dormancy is a potentially fruitful but underexplored target for rescue.
Collapse
Affiliation(s)
- Ashley Shade
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, École Centrale de Lyon, Ampère, UMR5005, 69134 Ecully cedex, France; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; The Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA; The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Validation List no. 208. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748437 DOI: 10.1099/ijsem.0.005592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|