1
|
Cao X, Cong P, Song Y, Liu Y, Xue C, Xu J. Promising mass spectrometry imaging: exploring microscale insights in food. Crit Rev Food Sci Nutr 2025:1-32. [PMID: 39817602 DOI: 10.1080/10408398.2025.2451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative and absolute quantification, providing reliable data for composition analysis, while super-resolution algorithms improved molecular spatial imaging resolution, facilitating biomarker and trace substance detection. MSI outperformed conventional methods in comprehensively exploring food functional factors, biomarker discovery, and monitoring processing/storage effects by discerning molecular species and their spatial distributions. However, challenges such as immature techniques, complex data processing, non-standardized instruments, and high costs existed. Future trends in instrument enhancement, multispectral integration, and data analysis improvement were expected to deepen our understanding of food chemistry and safety, highlighting MSI's revolutionary potential in food analysis and research.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2025; 30:69-84. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Wang J, Han X, Zheng Y, Zhao Y, Wang W, Ma D, Sun H. Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Molecules 2024; 29:4251. [PMID: 39275098 PMCID: PMC11397683 DOI: 10.3390/molecules29174251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Pinelliae Rhizoma (PR), a highly esteemed traditional Chinese medicinal herb, is widely applied in clinical settings due to its diverse pharmacological effects, including antitussive, expectorant, antiemetic, sedative-hypnotic, and antitumor activities. Pinellia ternata exhibits morphological variation in its leaves, with types resembling peach, bamboo, and willow leaves. However, the chemical composition differences among the corresponding rhizomes of these leaf phenotypes remain unelucidated. This pioneering research employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to conduct the in situ identification and spatial profiling of 35 PR metabolites in PR, comprising 12 alkaloids, 4 organic acids, 12 amino acids, 5 flavonoids, 1 sterol, and 1 anthraquinone. Our findings revealed distinct spatial distribution patterns of secondary metabolites within the rhizome tissues of varying leaf types. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) effectively differentiated between rhizomes associated with different leaf morphologies. Furthermore, this study identified five potential differential biomarkers-methylophiopogonanone B, inosine, cytidine, adenine, and leucine/isoleucine-that elucidate the biochemical distinctions among leaf types. The precise tissue-specific localization of these secondary metabolites offers compelling insights into the specialized accumulation of bioactive compounds in medicinal plants, thereby enhancing our comprehension of PR's therapeutic potential.
Collapse
Affiliation(s)
- Jiemin Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Xiaowei Han
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Wenshuai Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Donglai Ma
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Huigai Sun
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang 050200, China
- Key Laboratory for Quality Ensurance and Innovative TCMs of Dao-Di Herbs, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
4
|
Zhang J, Mao Z, Zhang D, Guo L, Zhao H, Miao M. Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review. Front Pharmacol 2024; 15:1442870. [PMID: 39148546 PMCID: PMC11324582 DOI: 10.3389/fphar.2024.1442870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal medicines (HMs) have long played a pivotal role in preventing and treating various human diseases and have been studied widely. However, the complexities present in HM metabolites and their unclear mechanisms of action have posed significant challenges in the modernization of traditional Chinese medicine (TCM). Over the past two decades, mass spectrometry imaging (MSI) has garnered increasing attention as a robust analytical technique that enables the simultaneous execution of qualitative, quantitative, and localization analyses without complex sample pretreatment. With advances in technical solutions, MSI has been extensively applied in the field of HMs. MSI, a label-free ion imaging technique can comprehensively map the spatial distribution of HM metabolites in plant native tissues, thereby facilitating the effective quality control of HMs. Furthermore, the spatial dimension information of small molecule endogenous metabolites within animal tissues provided by MSI can also serve as a supplement to uncover pharmacological and toxicological mechanisms of HMs. In the review, we provide an overview of the three most common MSI techniques. In addition, representative applications in HM are highlighted. Finally, we discuss the current challenges and propose several potential solutions. We hope that the summary of recent findings will contribute to the application of MSI in exploring metabolites and mechanisms of action of HMs.
Collapse
Affiliation(s)
- Jinying Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Zhiguo Mao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Ding Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Lin Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Hui Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| |
Collapse
|
5
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
6
|
Li Z, Li Q. Study on the Anti-Inflammatory Mechanism of Coumarins in Peucedanum decursivum Based on Spatial Metabolomics Combined with Network Pharmacology. Molecules 2024; 29:3346. [PMID: 39064924 PMCID: PMC11280318 DOI: 10.3390/molecules29143346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Peucedanum decursivum (Miq.) Maxim (P. decursivum) is a traditional Chinese medicinal plant with pharmacological effects such as anti-inflammatory and anti-tumor effects, the root of which is widely used as medicine. Determining the spatial distribution and pharmacological mechanisms of metabolites is necessary when studying the effective substances of medicinal plants. As a means of obtaining spatial distribution information of metabolites, mass spectrometry imaging has high sensitivity and allows for molecule visualization. In this study, matrix-assisted laser desorption mass spectrometry (MALDI-TOF-MSI) and network pharmacology were used for the first time to visually study the spatial distribution and anti-inflammatory mechanism of coumarins, which are metabolites of P. decursivum, to determine their tissue localization and mechanism of action. A total of 27 coumarins were identified by MALDI-TOF-MSI, which mainly concentrated in the cortex, periderm, and phloem of the root of P. decursivum. Network pharmacology studies have identified key targets for the anti-inflammatory effect of P. decursivum, such as TNF, PTGS2, and PRAKA. GO enrichment and KEGG pathway analyses indicated that coumarins in P. decursivum mainly participated in biological processes such as inflammatory response, positive regulation of protein kinase B signaling, chemical carcinogenesis receptor activation, pathways in cancer, and other biological pathways. The molecular docking results indicated that there was good binding between components and targets. This study provides a basis for understanding the spatial distribution and anti-inflammatory mechanism of coumarins in P. decursivum.
Collapse
Affiliation(s)
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
7
|
Ma D, Zhao M, Guo H, Wang L, Li Y, Yuan S, Yan Y, Zheng Y, Gu X, Song Y, Han X, Sun H. Spatial distribution of metabolites in processing Ziziphi Spinosae Semen as revealed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Sci Rep 2024; 14:15263. [PMID: 38961089 PMCID: PMC11222422 DOI: 10.1038/s41598-024-61500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is the first choice for the treatment of insomnia. This research aimed to reveal the spatial distribution of identifying quality markers of ZSS and to illustrate the metabolite quality characteristics of this herbal medicine. Here, we performed a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in situ to detect and image 33 metabolites in ZSS, including three saponins, six flavonoids, four alkaloids, eight fatty acids, and 12 amino acids. The MALDI images of the metabolites clearly showed the heterogeneous spatial distribution in different regions of ZSS tissues, such as the cotyledon, endosperm, and radicle. The distribution area of two saponins, six flavonoids, and three alkaloids increased significantly after the fried processing of ZSS. Based on the ion images, samples with different processing technologies were distinguished unambiguously by the pattern recognition method of orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 23 major influencing components exerting higher ion intensities were identified as the potential quality markers of ZSS. Results obtained in the current research demonstrate that the processing of ZSS changes its content and distribution of the medicinal components. The analysis of MALDI-MSI provides a novel MS-based molecular imaging approach to investigate and monitor traditional medicinal plants.
Collapse
Affiliation(s)
- Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center On Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050091, China
| | - Mengwei Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Lili Wang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China.
| | - Yage Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Shinong Yuan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuping Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaowei Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
8
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|