1
|
He X, Wang Y, Munawar A, Zhu J, Zhong J, Zhang Y, Guo H, Zhu Z, Baldwin IT, Zhou W. Manipulating stomatal aperture by silencing StSLAC1 affects potato plant-herbivore-parasitoid tritrophic interactions under drought stress. THE NEW PHYTOLOGIST 2025; 245:2133-2149. [PMID: 39780324 DOI: 10.1111/nph.20391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The effects of drought stress on stomatal opening dynamics, plant volatile organic compound (VOC) emissions and plant-insect interactions have been well-documented individually, but how they interact mechanistically remains poorly studied. Here, we studied how drought-triggered stomatal closure affects VOC emission and plant-trophic interactions by combining RNAi silencing, molecular biological and chemical analyses (GC-MS) of a potato-tuber moth-egg parasitoid tritrophic system. Drought stress attenuated stomatal apertures and VOC emissions, which made the potato (Solanum tuberosum L.) plants more attractive to the herbivore but less attractive to the parasitoid. Stomatal aperture manipulations through StSLAC1 gene knockdown and chemical treatments (ABA and 5-aminolevulinic acid) consistently affected drought-triggered VOC emissions and plant-herbivore-parasitoid interactions, supporting aperture-dependent VOC emission. RNA-Seq analysis revealed that drought stress did not transcriptionally inhibit VOC biosynthesis. Collectively, our findings are consistent with the stomatal regulation of plant-insect interactions through the modulation of VOC emissions under drought stress. This highlights the intricate interplay between stomatal dynamics, VOC emission and plant-insect interactions.
Collapse
Affiliation(s)
- Xiaoli He
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Yizhou Wang
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxian Zhu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Zhong
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Yancheng Agriculture and Rural Bureau, Yancheng, 224005, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Zhong J, Zhang J, Zhang Y, Ge Y, He W, Liang C, Gao Y, Zhu Z, Machado RAR, Zhou W. Heat stress reprograms herbivory-induced defense responses in potato plants. BMC PLANT BIOLOGY 2024; 24:677. [PMID: 39014327 PMCID: PMC11253553 DOI: 10.1186/s12870-024-05404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.
Collapse
Affiliation(s)
- Jian Zhong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Jinyi Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Ge
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing He
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengjuan Liang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
3
|
Zhang Y, Zhong J, Munawar A, Cai Y, He W, Zhang Y, Guo H, Gao Y, Zhu Z, Zhou W. Knocking down a DNA demethylase gene affects potato plant defense against a specialist insect herbivore. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:483-499. [PMID: 37781866 DOI: 10.1093/jxb/erad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
DNA demethylase (DML) is involved in plant development and responses to biotic and abiotic stresses; however, its role in plant-herbivore interaction remains elusive. Here, we found that herbivory by the potato tuber moth, Phthorimaea operculella, rapidly induced the genome-wide DNA methylation and accumulation of DML gene transcripts in potato plants. Herbivory induction of DML transcripts was suppressed in jasmonate-deficient plants, whereas exogenous application of methyl jasmonate (MeJA) improved DML transcripts, indicating that the induction of DML transcripts by herbivory is associated with jasmonate signaling. Moreover, P. operculella larvae grew heavier on DML gene (StDML2) knockdown plants than on wild-type plants, and the decreased biosynthesis of jasmonates in the former may be responsible for this difference, since the larvae feeding on these two genotypes supplemented with MeJA showed similar growth. In addition, P. operculella adult moths preferred to oviposit on StDML2 knockdown plants than on wild-type plants, which was associated with the reduced emission of β-caryophyllene in the former. In addition, supplementing β-caryophyllene to these two genotypes further disrupted moths' oviposit choice preference for them. Interestingly, in StDML2 knockdown plants, hypermethylation was found at the promoter regions for the key genes StAOS and StAOC in the jasmonate biosynthetic pathway, as well as for the key gene StTPS12 in β-caryophyllene production. Our findings suggest that knocking down StDML2 can affect herbivore defense via jasmonate signaling and defense compound production in potato plants.
Collapse
Affiliation(s)
- Yadong Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jian Zhong
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yajie Cai
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjing He
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixin Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| |
Collapse
|
4
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
5
|
Huang X, Zhang H, Li H, Wang M, Guo X, Liu E, Han X, Zhen C, Li A, Shi W, Zhang Y. Functional characterization of a terpene synthase responsible for ( E)-β-ocimene biosynthesis identified in Pyrus betuleafolia transcriptome after herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:1077229. [PMID: 36479507 PMCID: PMC9720175 DOI: 10.3389/fpls.2022.1077229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
(E)-β-ocimene, a ubiquitous monoterpene volatile in plants, is emitted from flowers to attract pollinators and/or from vegetative tissues as part of inducible defenses mediated by complex signaling networks when plants are attacked by insect herbivores. Wild pear species Pyrus betuleafolia used worldwide as rootstock generally displays valuable pest-resistant traits and is a promising genetic resource for pear breeding. In the current study, transcriptional changes in this wild pear species infested with a polyphagous herbivore Spodoptera litura and the underlying molecular mechanisms were fully investigated. A total of 3,118 differentially expressed genes (DEGs) were identified in damaged pear leaf samples. Spodoptera litura larvae infestation activated complex phytohormonal signaling networks in which jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid and auxin pathways were induced, whereas salicylic acid and abscisic acid pathways were suppressed. All DEGs associated with growth-related photosynthesis were significantly downregulated, whereas most DEGs involved in defense-related early signaling events, transcription factors, green leaf volatiles and volatile terpenes were significantly upregulated. The PbeOCS (GWHGAAYT028729), a putative (E)-β-ocimene synthase gene, was newly identified in P. betuleafolia transcriptome. The upregulation of PbeOCS in S. litura-infested pear leaves supports a potential role for PbeOCS in herbivore-induced plant defenses. In enzyme-catalyzed reaction, recombinant PbeOCS utilized only geranyl pyrophosphate but not neryl diphosphate, farnesyl pyrophosphate or geranylgeranyl diphosphate as a substrate, producing (E)-β-ocimene as the major product and a trace amount of (Z)-β-ocimene. Moreover, as a catalytic product of PbeOCS, (E)-β-ocimene showed repellent effects on larvae of S. litura in dual-choice bioassays. What is more, (E)-β-ocimene increased mortalities of larvae in no-choice bioassays. These findings provide an overview of transcriptomic changes in wild pears in response to chewing herbivores and insights into (E)-β-ocimene biosynthesis in pear plants, which will help elucidate the molecular mechanisms underlying pear-insect interactions.
Collapse
Affiliation(s)
- Xinzheng Huang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- General Station of Agricultural Technology Extension, Xinjiang Production and Construction Corps, Urumqi, China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi, China
| | - Huali Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengting Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyue Guo
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Enliang Liu
- Institute of Grain Crops, XinJiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi, China
| | - Congai Zhen
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Aili Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wangpeng Shi
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|