1
|
Jiang L, Gao Y, Han L, Zhang W, Xu X, Chen J, Feng S, Fan P. Engineering Plant Metabolism for Synthesizing Amino Acid Derivatives of Animal Origin Using a Synthetic Modular Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356107 DOI: 10.1021/acs.jafc.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of Nicotiana benthamiana as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin. Our results revealed the expression of a standalone creatine module resulted in the production of 2.3 μg/g fresh weight of creatine in N. benthamiana leaves. Integrating two modules significantly carnosine yield increased by 3.8-fold and minimized the impact on plant amino acid metabolism compared to individual module application. Unexpectedly, introducing the taurine module caused a feedback-like inhibition of plant cysteine biosynthesis, revealing complex metabolic adjustments that can occur when introducing foreign pathways. Our findings underline the potential for employing plants as biofactories for the sustainable production of essential nutrients of animal origin.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058 Hangzhou, China
| |
Collapse
|
2
|
Wang L, Liu D, Jiao X, Wu Q, Wang W. The Serine Acetyltransferase ( SAT) Gene Family in Tea Plant ( Camellia sinensis): Identification, Classification and Expression Analysis under Salt Stress. Int J Mol Sci 2024; 25:9794. [PMID: 39337281 PMCID: PMC11432525 DOI: 10.3390/ijms25189794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cysteine plays a pivotal role in the sulfur metabolism network of plants, intimately influencing the conversion rate of organic sulfur and the plant's capacity to withstand abiotic stresses. In tea plants, the serine acetyltransferase (SAT) genes emerge as a crucial regulator of cysteine metabolism, albeit with a notable lack of comprehensive research. Utilizing Hidden Markov Models, we identified seven CssSATs genes within the tea plant genome. The results of the bioinformatics analysis indicate that these genes exhibit an average molecular weight of 33.22 kD and cluster into three distinct groups. Regarding gene structure, CssSAT1 stands out with ten exons, significantly more than its family members. In the promoter regions, cis-acting elements associated with environmental responsiveness and hormone induction predominate, accounting for 34.4% and 53.1%, respectively. Transcriptome data revealed intricate expression dynamics of CssSATs under various stress conditions (e.g., PEG, NaCl, Cold, MeJA) and their tissue-specific expression patterns in tea plants. Notably, qRT-PCR analysis indicated that under salt stress, CssSAT1 and CssSAT3 expression levels markedly increased, whereas CssSAT2 displayed a downregulatory trend. Furthermore, we cloned CssSAT1-CssSAT3 genes and constructed corresponding prokaryotic expression vectors. The resultant recombinant proteins, upon induction, significantly enhanced the NaCl tolerance of Escherichia coli BL21, suggesting the potential application of CssSATs in bolstering plant stress resistance. These findings have enriched our comprehension of the multifaceted roles played by CssSATs genes in stress tolerance mechanisms, laying a theoretical groundwork for future scientific endeavors and research pursuits.
Collapse
Affiliation(s)
| | | | | | - Qiong Wu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.W.); (D.L.); (X.J.)
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.W.); (D.L.); (X.J.)
| |
Collapse
|
3
|
Bhutia KL, Ahmad M, Kisku A, Sudhan RA, Bhutia ND, Sharma VK, Prasad BD, Thudi M, Obročník O, Bárek V, Brestic M, Skalicky M, Gaber A, Hossain A. Shoot transcriptome revealed widespread differential expression and potential molecular mechanisms of chickpea ( Cicer arietinum L.) against Fusarium wilt. Front Microbiol 2024; 14:1265265. [PMID: 38370576 PMCID: PMC10870781 DOI: 10.3389/fmicb.2023.1265265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024] Open
Abstract
Introduction The yield of chickpea is severely hampered by infection wilt caused by several races of Fusarium oxysporum f. sp. ciceris (Foc). Methods To understand the underlying molecular mechanisms of resistance against Foc4 Fusarium wilt, RNA sequencing-based shoot transcriptome data of two contrasting chickpea genotypes, namely KWR 108 (resistant) and GL 13001 (susceptible), were generated and analyzed. Results and Discussion The shoot transcriptome data showed 1,103 and 1,221 significant DEGs in chickpea genotypes KWR 108 and GL 13001, respectively. Among these, 495 and 608 genes were significantly down and up-regulated in genotypes KWR 108, and 427 and 794 genes were significantly down and up-regulated in genotype GL 13001. The gene ontology (GO) analysis of significant DEGs was performed and the GO of the top 50 DEGs in two contrasting chickpea genotypes showed the highest cellular components as membrane and nucleus, and molecular functions including nucleotide binding, metal ion binding, transferase, kinase, and oxidoreductase activity involved in biological processes such as phosphorylation, oxidation-reduction, cell redox homeostasis process, and DNA repair. Compared to the susceptible genotype which showed significant up-regulation of genes involved in processes like DNA repair, the significantly up-regulated DEGs of the resistant genotypes were involved in processes like energy metabolism and environmental adaptation, particularly host-pathogen interaction. This indicates an efficient utilization of environmental adaptation pathways, energy homeostasis, and stable DNA molecules as the strategy to cope with Fusarium wilt infection in chickpea. The findings of the study will be useful in targeting the genes in designing gene-based markers for association mapping with the traits of interest in chickpea under Fusarium wilt which could be efficiently utilized in marker-assisted breeding of chickpea, particularly against Foc4 Fusarium wilt.
Collapse
Affiliation(s)
- Karma L. Bhutia
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Mahtab Ahmad
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Anima Kisku
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - R. A. Sudhan
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Nangsol D. Bhutia
- College of Horticulture and Forestry, Central Agricultural University (Imphal), Pasighat, Arunachal Pradesh, India
| | - V. K. Sharma
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
4
|
Bhattacharyya S, Giridhar M, Meier B, Peiter E, Vothknecht UC, Chigri F. Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2O 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1223778. [PMID: 37771486 PMCID: PMC10523330 DOI: 10.3389/fpls.2023.1223778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Collapse
Affiliation(s)
| | - Maya Giridhar
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ute C. Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|