1
|
Li YD, Li X, Zhu LL, Yang Y, Guo DL, Xie LQ. Integrating RNA-seq and population genomics to elucidate salt tolerance mechanisms in flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1442286. [PMID: 39634061 PMCID: PMC11616478 DOI: 10.3389/fpls.2024.1442286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
Salinity is an important abiotic environmental stressor threatening agricultural productivity worldwide. Flax, an economically important crop, exhibits varying degrees of adaptability to salt stress among different cultivars. However, the specific molecular mechanisms underlying these differences in adaptation have remained unclear. The objective of this study was to identify candidate genes associated with salt tolerance in flax using RNA-Seq combined with population-level analysis. To begin with, three representative cultivars were selected from a population of 200 flax germplasm and assessed their physiological and transcriptomic responses to salt stress. The cultivar C121 exhibited superior osmoregulation, antioxidant capacity, and growth under salt stress compared to the other two cultivars. Through transcriptome sequencing, a total of 7,459 differentially expressed genes associated with salt stress were identified, which were mainly enriched in pathways related to response to toxic substances, metal ion transport, and phenylpropanoid biosynthesis. Furthermore, genotyping of the 7,459 differentially expressed genes and correlating them with the phenotypic data on survival rates under salt stress allowed the identification of 17 salt-related candidate genes. Notably, the nucleotide diversity of nine of the candidate genes was significantly higher in the oil flax subgroup than in the fiber flax subgroup. These results enhance the fundamental understanding of salt tolerance mechanisms in flax, provide a basis for a more in-depth exploration of its adaptive responses to salt stress, and facilitate the scientific selection and breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Yuan-Dong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Basic Medicine, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Lei-Lei Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Dong-Liang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li-Qiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- College of Smart Agriculture, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Khattab HI, Sadak MS, Dawood MG, Elkady FMA, Helal NM. Foliar application of esculin and digitoxin improve the yield quality of salt-stressed flax by improving the antioxidant defense system. BMC PLANT BIOLOGY 2024; 24:963. [PMID: 39402439 PMCID: PMC11476730 DOI: 10.1186/s12870-024-05626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Secondary metabolites of several plants, including esculin and digitoxin, which are cardiac glycosides, were previously employed for their therapeutic effects. The current study aims to investigate the functions of the main Na+ /K+ transport inhibitor digitoxin and the antioxidant esculin for enhancing flax plant growth and production under salinity. METHODOLOGY Flax plants were irrigated with distilled water supplemented with 0.0 and 5000 mg/L salt solution starting from 15 DAS from sowing. Then exogenous treatment with digitoxin and esculin with 50 mg L- 1 and 100 mg L- 1 were used for this work. RESULTS According to the results of this work, foliar spraying of esculin or digitoxin increased the salinity tolerance of flax plants.The foliar application of either esculin or digitoxin induced an elevation in the contents of photosynthetic pigments, osmolytes including soluble sugar and proline as well as the total phenols in salt-stressed flax plants. Moreover, esculin and digitoxin in particular counteract oxidative stress by increasing the activity of antioxidant enzymes including superoxide dismutase, catalase, peroxidase, phenylalanine ammonia-lyase, and tyrosine ammonia lyase, leading to a decrease in reactive oxygen species and lipid peroxidation levels and electrolyte leakage. The efficiency of esculin and digitoxin to sustain ion homeostasis by inhibiting Na+ absorption and increasing potassium, calcium, and phosphorus in flax plants may be the reason for their protective actions towards salinity.As a consequence, esculin and digitoxin increased yield quantity and quality as shown by increases in all investigated yield criteriaas shoot height, root length, their fresh and dry weights as well asseed yield/plant (g), and 1000 seeds weight, especially those that improved the desired oil properties. CONCLUSION In conclusion, this study concluded that digitoxin was more effective in inhibiting Na+ build-up and increasing flax salinity tolerance, particularly at the high investigated dose as compared to esculin. In this study, we reported the recent findings of exogenousapplication of either digitoxin or esculin glycosides which are new investigated salt alleviators never used before for improving the salt tolerance in flax plants.
Collapse
Affiliation(s)
- Hemmat I Khattab
- Botany Department, Faculty of Science, Ain Shams University, P.O.11566, Abbassyia, Cairo, Egypt
| | - Mervat Sh Sadak
- Botany Department, Agricultural and Biological Research Institute, National Research Centre, P. O. 12622, 33 El-Buhouth Street, Dokki, Giza, Egypt.
| | - Mona G Dawood
- Botany Department, Agricultural and Biological Research Institute, National Research Centre, P. O. 12622, 33 El-Buhouth Street, Dokki, Giza, Egypt
| | - Fatma M A Elkady
- Botany Department, Agricultural and Biological Research Institute, National Research Centre, P. O. 12622, 33 El-Buhouth Street, Dokki, Giza, Egypt
| | - Nesma M Helal
- Botany Department, Faculty of Science, Ain Shams University, P.O.11566, Abbassyia, Cairo, Egypt
| |
Collapse
|
3
|
Yadav SK, Singh D, Prasad L, Jat B, Rao GP, Saharan MS, Kaur V. Utilization of 16Sr RNA and secA genes for molecular discernment of ' Candidatus Phytoplasma australasiaticum' strain associated with linseed germplasm in India. 3 Biotech 2024; 14:201. [PMID: 39149558 PMCID: PMC11322467 DOI: 10.1007/s13205-024-04046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
The growing prevalence of phytoplasma associated symptoms on linseed or flax (Linum usitatissimum L.) germplasm at Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR) fields was noticed during the 2019-22 growing seasons. The characteristic phytoplasma symptoms of phyllody, stem fasciation, stunting, along with floral and capsule malformations were observed in 41 linseed accessions grown at experimental fields of ICAR-NBPGR, Delhi. During 3 years, the presence of phytoplasma in symptomatic linseed accessions was confirmed by nested-PCR assays utilizing 16S rRNA and secA gene-specific primers. The 16S rRNA and secA gene sequences of linseed phytoplasma strains from the representative symptomatic 41 linseed accessions exhibited 100% sequence identity among themselves and 99.93% and 99.82% sequence homology with reference strain, 'Candidatus Phytoplasma australasiaticum' (GenBank Accession: Y10097). Phylogenetic analysis of 16S rRNA and secA gene sequences clustered the linseed isolates with the peanut witches' broom group belonging to 'Ca. P. australasiaticum' strains. The virtual RFLP analysis of 16S rRNA F2nR2 fragment (~1.2 kb) of linseed phytoplasma strains further classified it into 16Sr group II, subgroup D. Our results suggested confirmation of the association of 'Ca. P. australasiaticum' strain (16SrII-D) in the linseed germplasm accessions from North India, which is the first report from India. The phytoplasma infection also reduced the growth and yield parameters of two linseed accessions (IC0498748 and EC0718851).
Collapse
Affiliation(s)
- Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Devender Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Lakshman Prasad
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Balram Jat
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Govind Pratap Rao
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Mahender Singh Saharan
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
4
|
Kaur V, Gomashe SS, Yadav SK, Singh D, Sheela, Chauhan SS, Kumar V, Jat B, Tayade NR, Langyan S, Kaushik N, Singh M, Kheralia M, Wankhede DP, Aravind J, Srivastava V, Gupta K, Kumar A, Singh GP. Leveraging genetic resource diversity and identification of trait-enriched superior genotypes for accelerated improvement in linseed (Linum usitatissimum L.). Sci Rep 2024; 14:20266. [PMID: 39217216 PMCID: PMC11365958 DOI: 10.1038/s41598-024-71044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Linseed or flaxseed, native to the Indian subcontinent, had undergone domestication, edaphic selection and evolutionary processes that may have resulted in huge genetic variability in Indian genotypes. To understand the hitherto unexplored genetic diversity for sustainable flaxseed production amid challenges of climate fluctuation and identify trait-specific high-yielding genotypes, 2576 unique linseed accessions were comprehensively evaluated for 36 traits for up to six environments representing two major agroecological zones in India. A wide range of variability was recorded for days to initiation of flowering (42.86-114.99), plant height (43.31-122.88 cm), capsules/plant (64.62-375.87), seed size (6.06-14.44 cm2), thousand seed weight (2.80-11.86 g), seed yield (2.93-17.28 g/plant), oil content (30.14-45.96%) and fatty acid profile especially the key constituent omega-3 fatty acid (25.4-65.88%). Most of the traits such as plant height, flowering time, seed yield, seed and capsule size showed a high or moderately high level of variance coupled with high broad sense heritability indicating precise capturing of less heritable quantitative traits. The infraspecific classification of the tested collection revealed the seed/oil type (2498 accessions) as the dominant morphotype over dual-purpose/fiber flax (78 accessions) in the conserved collection. Correlation analysis indicated a significant positive association between flowering time, plant height, days to maturity and oil content. Trait-specific superior genotypes for earliness (50% flowering in < 60 days, maturity in < 122 days), bold seeds with high thousand seed weight (> 11 g), capsules/plant (> 350), oil content (> 45%) and fatty acid composition (> 65% alpha-linolenic acid) were identified to aid genetic improvement of linseed and to broaden the narrow genetic base.
Collapse
Affiliation(s)
- Vikender Kaur
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
| | - Sunil S Gomashe
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India
| | - Shashank K Yadav
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Devender Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Sheela
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Shubhendra Singh Chauhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Vinay Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Balram Jat
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Nandan Ramesh Tayade
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India
| | - Sapna Langyan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Gautam Buddha Nagar, Noida, UP, India
| | - Mamta Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Munisha Kheralia
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | | | - J Aravind
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Vartika Srivastava
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Kavita Gupta
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Ashok Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| |
Collapse
|
5
|
Zhao W, Zhang R, Zhou L, Zhang Z, Du F, Wu R, Kong J, An S. Construction and optimization of a genetic transformation system for efficient expression of human insulin-GFP fusion gene in flax. BIORESOUR BIOPROCESS 2024; 11:83. [PMID: 39190215 DOI: 10.1186/s40643-024-00799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The human insulin gene modified with a C-peptide was synthesized according to the plant-preferred codon, and a fusion gene expression vector of insulin combined with green fluorescent protein (GFP) was constructed. The optimization of the flax callus culturing was undertaken, and a more efficient Agrobacterium-mediated genetic transformation of the flax hypocotyls was achieved. The critical concentration values of hygromycin on the flax hypocotyl development, as well as on its differentiated callus, were explored by the method of antibiotic gradient addition, and the application of antibiotic screening for the verification of positive calluses was assessed. The fusion gene of insulin and GFP was successfully inserted into the flax genome and expressed, as confirmed through polymerase chain reaction and Western blotting. In conclusion, we have established a flax callus culture system suitable for insulin expression. By optimizing the conditions of the flax callus induction, transformation, screening, and verification of a transgenic callus, we have provided an effective way to obtain insulin. Moreover, the herein-employed flax callus culture system could provide a feasible, cheap, and environmentally friendly platform for producing bioactive proteins.
Collapse
Affiliation(s)
- Wei Zhao
- School of Medicine, Hebei University of Engineering, Handan Economic and Technological Development Zone, No. 19 Taiji Road, Handan, Hebei Province, 056038, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
| | - Rui Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Changan District, Shijiazhuang, Hebei, 050000, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
- Shijiazhuang Medical College, No.1 Tongxin Road, Lingshou County, Shijiazhuang, Hebei, 050500, China
| | - Zhongxia Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
| | - Fei Du
- Department of Ultrasound Medicine, Hengshui People's Hospital, Hengshui, Hebei, 053000, China
| | - Ruoyu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| | - Jing Kong
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| |
Collapse
|
6
|
Singh CM, Singh BK, Purwar S, Nair B, Ruchi, Patel A, Singh S, Kaur V. Comprehensive characterization of protease inhibiting gene family, cis-regulatory elements, and protein interaction network in linseed and their expression upon bud fly infestation. Sci Rep 2024; 14:17907. [PMID: 39095443 PMCID: PMC11297176 DOI: 10.1038/s41598-024-68943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Linseed, also known as flax is an important oilseed crop with many potential uses in paint, textile, food and pharmaceutical industries. Susceptibility to bud fly (Dasyneura lini Barnes) infestation is a serious biotic concern leading to severe yield penalty in linseed. Protease inhibitors (PIs) are potential candidates that activate during the insect-pest attack and modulate the resistance. In the present study, we explored the PI candidates in the linseed genome and a total of 100 LuPI genes were identified and grouped into five distinct subgroups. The analysis of cis-acting elements revealed that almost all LuPI promoters contain several regulatory elementary related to growth and development, hormonal regulation and stress responses. Across the subfamilies of PIs, the specific domains are consistently found conserved in all protein sequences. The tissue-specific in-silico expression pattern via RNA-seq revealed that all the genes were regulated during different stress. The expression through qRT-PCR of 15 genes revealed the significant up-regulation of LuPI-24, LuPI-40, LuPI-49, LuPI-53, and LuPI-63 upon bud fly infestation in resistant genotype EC0099001 and resistant check variety Neela. This study establishes a foundation resource for comprehending the structural, functional, and evolutionary dimensions of protease inhibitors in linseed.
Collapse
Affiliation(s)
- Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India
| | - Bhupendra Kumar Singh
- Department of Entomology, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India.
| | - Shalini Purwar
- Department of Basic and Social Sciences, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India
| | - Beena Nair
- AICRP on Linseed and Mustard, College of Agriculture, Dr. PDKV-Akola, Nagpur, Maharashtra, 440 001, India
| | - Ruchi
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India
| | - Amar Patel
- AICRP on Linseed and Sesame, Oilseed Research Station, Banda University of Agriculture and Technology, Mauranipur, Uttar Pradesh, 282 204, India
| | - Saurabh Singh
- AICRP on Linseed and Sesame, Oilseed Research Station, Banda University of Agriculture and Technology, Mauranipur, Uttar Pradesh, 282 204, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, 110 012, India.
| |
Collapse
|
7
|
Yadav N, Kumar A, Sawariya M, Kumar N, Mehra H, Kumar S, Kaur V, Arya SS. Effect of GA 3 and calcium on growth, biochemical, and fatty acid composition of linseed under chloride-dominated salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16958-16971. [PMID: 38326686 DOI: 10.1007/s11356-024-32325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The accumulation of salts in soil is an environmental threat affecting plant growth and crop yield. Linseed or flax is an ancient crop that has multifarious utilities in terms of industrial oil, textile fiber, and products. Salt susceptibility adversely affects linseed production, particularly to meet the growing demand for nutritional and nutraceutical products. In the present study, the ameliorative potential of gibberellic acid (GA3) and calcium (Ca2+) in mitigating the adverse effects of chloride-dominated salinity stress on the growth and physiological and biochemical processes in linseed was determined. Severe salinity treatment (10 dSm-1) resulted in stunted growth of tested linseed genotypes causing a significant reduction in biomass while proline content, phenol, H2O2, lipid peroxidation, and DPPH activity were increased in comparison to control. The exogenous application of 10-6 M GA3 and/or 10 mg CaCl2 kg-1 was found to mitigate the adverse effects of salinity stress. The mitigation was accomplished through the improvement of growth indicators, increased osmoprotectants such as proline and phenol content, stimulating DPPH activity, and reduction of H2O2 content and lipid peroxidation. The comparative evaluation of different saline treatments imposed individually and in combination with GA3 and Ca2+ revealed that combined GA3 and Ca2+ application exhibited synergistic effects and was most effective in mitigating the negative impacts of salt stress. The present study unravels the ameliorative role of GA3 and Ca2+ (individual or combined) in the physiologic-biochemical adaptive response of linseed plants grown under chloride-dominated salinity and thus aids in a better understanding of the underlying tolerance mechanisms of plants to withstand stress in saline environments.
Collapse
Affiliation(s)
- Neha Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Ajay Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Mamta Sawariya
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Naveen Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Himanshu Mehra
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Sunil Kumar
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, India
| | - Vikender Kaur
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | |
Collapse
|
8
|
Plaha NS, Kaushik N, Awasthi S, Singh M, Kaur V, Langyan S, Kumar A, Kalia S. Comparison of nutritional quality of fourteen wild Linum species based on fatty acid composition, lipid health indices, and chemometric approaches unravelling their nutraceutical potential. Heliyon 2023; 9:e21192. [PMID: 37928019 PMCID: PMC10623282 DOI: 10.1016/j.heliyon.2023.e21192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Fatty acid profiles of 14 Linum species was determined by GC-MS analysis to study the nutritional quality of Linum species based on fatty acid composition, lipid health indices, and chemometric approaches. L. lewisii and L. marginale found to have the highest content of ALA i.e., 65.38 % and 62.79 %, respectively, L. tenuifolium recorded the highest linoleic acid content (69.69 %), while, L. catharticum recorded highest oleic acid (27.03 %). Health indices viz. polyunsaturated fatty acids/saturated fatty acids ratio, n-6/n-3 fatty acids ratio, atherogenicity, thrombogenicity, oxidability, oxidative stability, hypocholesterolemic/hypercholesterolemic fatty acids, and peroxidisability calculated based on the fatty acid composition revealed that all the linseed species except L. aristatum, L. tenuifolium and L. hudsoniodes have healthy fatty acid composition. L. lewisii clearly emerges as a promising species followed by L. bienne with great values across multiple indices, making them as a potential candidate for dietary or nutritional interests. The lipid profile of Linum species could be well distinguished by two principal components by Principal Component Analysis (PCA).
Collapse
Affiliation(s)
- Navdeep Singh Plaha
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Sumegha Awasthi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Mamta Singh
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Vikender Kaur
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sapna Langyan
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Ashok Kumar
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Government of India, New Delhi, India
| |
Collapse
|
9
|
He L, Sui Y, Che Y, Wang H, Rashid KY, Cloutier S, You FM. Genome-wide association studies using multi-models and multi-SNP datasets provide new insights into pasmo resistance in flax. FRONTIERS IN PLANT SCIENCE 2023; 14:1229457. [PMID: 37954993 PMCID: PMC10634603 DOI: 10.3389/fpls.2023.1229457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 11/14/2023]
Abstract
Introduction Flax (Linum usitatissimum L.) is an economically important crop due to its oil and fiber. However, it is prone to various diseases, including pasmo caused by the fungus Septoria linicola. Methods In this study, we conducted field evaluations of 445 flax accessions over a five-year period (2012-2016) to assess their resistance to pasmo A total of 246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis. Four statistical models, including the single-locus model GEMMA and the multi-locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify quantitative trait nucleotides (QTNs) associated with pasmo resistance. Results We identified 372 significant QTNs or 132 tag QTNs associated with pasmo resistance from five pasmo resistance datasets (PAS2012-PAS2016 and the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs had R2 values of 0.66-16.98% from the ALL SNP dataset, 0.68-20.54%from the GB SNP dataset, and 0.52-22.42% from the RGAB SNP dataset. Of these tag QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-localizing with 39 tag QTNs were considered as potential candidates for controlling pasmo resistance in flax and 50 QTN-by-environment interactions(QEIs) were identified to account for genes by environmental interactions. Nine RGAs were predicted as candidate genes for ten QEIs. Discussion Our results suggest that pasmo resistance in flax is polygenic and potentially influenced by environmental factors. The identified QTNs provide potential targets for improving pasmo resistance in flax breeding programs. This study sheds light on the genetic basis of pasmo resistance and highlights the importance of considering both genetic and environmental factors in breeding programs for flax.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Huixian Wang
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Khalid Y. Rashid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
10
|
Du R, Li X, Hu H, Zhao Y, Chen M, Liu Z. Linum usitatissimum AccD Enhances Seed Fatty Acid Accumulation and Tolerance to Environmental Stresses during Seed Germination in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3100. [PMID: 37687347 PMCID: PMC10489840 DOI: 10.3390/plants12173100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Flax (Linum usitatissimum L.), as an important oil-producing crop, is widely distributed throughout the world, and its seeds are rich in polyunsaturated fatty acids (FAs). Previous studies have revealed that Arabidopsis thaliana ACETYL-CoA CARBOXYLASE (AtACCase) is vital for FA biosynthesis. However, the functions of L. usitatissimum AccD (LuAccD) on FA accumulation and seed germination remain unclear. In the present study, we cloned the LuAccD coding sequence from the flax cultivar 'Longya 10', identified conserved protein domains, and performed a phylogenetic analysis to elucidate its relationship with homologs from a range of plant species. Ectopic expression of LuAccD in A. thaliana wild-type background enhanced seed FA accumulation without altering seed morphological characteristics, including seed size, 1000-seed weight, and seed coat color. Consistently, the expression of key genes involved in FA biosynthesis was greatly up-regulated in the developing seeds of LuAccD overexpression lines. Additionally, we demonstrated that LuAccD acts as a positive regulator of salt and mannitol tolerance during seed germination in A. thaliana. These results provide important insights into the functions of LuAccD, which facilitates the oil quantity and abiotic stress tolerance of oil-producing crops through genetic manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Zijin Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis and College of Agronomy, Northwest A&F University, Yangling 712100, China; (R.D.); (X.L.); (H.H.); (Y.Z.); (M.C.)
| |
Collapse
|
11
|
Moyse J, Lecomte S, Marcou S, Mongelard G, Gutierrez L, Höfte M. Overview and Management of the Most Common Eukaryotic Diseases of Flax ( Linum usitatissimum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2811. [PMID: 37570965 PMCID: PMC10420651 DOI: 10.3390/plants12152811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Flax is an important crop cultivated for its seeds and fibers. It is widely grown in temperate regions, with an increase in cultivation areas for seed production (linseed) in the past 50 years and for fiber production (fiber flax) in the last decade. Among fiber-producing crops, fiber flax is the most valuable species. Linseed is the highest omega-3 oleaginous crop, and its consumption provides several benefits for animal and human health. However, flax production is impacted by various abiotic and biotic factors that affect yield and quality. Among biotic factors, eukaryotic diseases pose a significant threat to both seed production and fiber quality, which highlights the economic importance of controlling these diseases. This review focuses on the major eukaryotic diseases that affect flax in the field, describing the pathogens, their transmission modes and the associated plant symptoms. Moreover, this article aims to identify the challenges in disease management and provide future perspectives to overcome these biotic stresses in flax cultivation. By emphasizing the key diseases and their management, this review can aid in promoting sustainable and profitable flax production.
Collapse
Affiliation(s)
- Julie Moyse
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Sylvain Lecomte
- LINEA–Semences, 20 Avenue Saget, 60210 Grandvilliers, France;
| | - Shirley Marcou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
| |
Collapse
|
12
|
Paliwal S, Tripathi MK, Tiwari S, Tripathi N, Payasi DK, Tiwari PN, Singh K, Yadav RK, Asati R, Chauhan S. Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed ( Linum usitatissimum L.): A Comprehensive Review. Genes (Basel) 2023; 14:1461. [PMID: 37510365 PMCID: PMC10379177 DOI: 10.3390/genes14071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Flax, or linseed, is considered a "superfood", which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited to various habitats and agro-ecological conditions. Numerous abiotic and biotic stressors that can either have a direct or indirect impact on plant health are experienced by flax plants as a result of changing environmental circumstances. Research on the impact of various stresses and their possible ameliorators is prompted by such expectations. By inducing the loss of specific alleles and using a limited number of selected varieties, modern breeding techniques have decreased the overall genetic variability required for climate-smart agriculture. However, gene banks have well-managed collectionns of landraces, wild linseed accessions, and auxiliary Linum species that serve as an important source of novel alleles. In the past, flax-breeding techniques were prioritised, preserving high yield with other essential traits. Applications of molecular markers in modern breeding have made it easy to identify quantitative trait loci (QTLs) for various agronomic characteristics. The genetic diversity of linseed species and the evaluation of their tolerance to abiotic stresses, including drought, salinity, heavy metal tolerance, and temperature, as well as resistance to biotic stress factors, viz., rust, wilt, powdery mildew, and alternaria blight, despite addressing various morphotypes and the value of linseed as a supplement, are the primary topics of this review.
Collapse
Affiliation(s)
- Shruti Paliwal
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Devendra K Payasi
- All India Coordinated Research Project on Linseed, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Regional Agricultural Research Station, Sagar 470001, India
| | - Prakash N Tiwari
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Kirti Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Ruchi Asati
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| |
Collapse
|
13
|
Saroha A, Gomashe SS, Kaur V, Pal D, Ujjainwal S, Aravind J, Singh M, Rajkumar S, Singh K, Kumar A, Wankhede DP. Genetic dissection of thousand-seed weight in linseed ( Linum usitatissimum L.) using multi-locus genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1166728. [PMID: 37332700 PMCID: PMC10272591 DOI: 10.3389/fpls.2023.1166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Flaxseed/linseed is an important oilseed crop having applications in the food, nutraceutical, and paint industry. Seed weight is one of the most crucial determinants of seed yield in linseed. Here, quantitative trait nucleotides (QTNs) associated with thousand-seed weight (TSW) have been identified using multi-locus genome-wide association study (ML-GWAS). Field evaluation was carried out in five environments in multi-year-location trials. SNP genotyping information of the AM panel of 131 accessions comprising 68,925 SNPs was employed for ML-GWAS. From the six ML-GWAS methods employed, five methods helped identify a total of 84 unique significant QTNs for TSW. QTNs identified in ≥ 2 methods/environments were designated as stable QTNs. Accordingly, 30 stable QTNs have been identified for TSW accounting up to 38.65% trait variation. Alleles with positive effect on trait were analyzed for 12 strong QTNs with r 2 ≥ 10.00%, which showed significant association of specific alleles with higher trait value in three or more environments. A total of 23 candidate genes have been identified for TSW, which included B3 domain-containing transcription factor, SUMO-activating enzyme, protein SCARECROW, shaggy-related protein kinase/BIN2, ANTIAUXIN-RESISTANT 3, RING-type E3 ubiquitin transferase E4, auxin response factors, WRKY transcription factor, and CBS domain-containing protein. In silico expression analysis of candidate genes was performed to validate their possible role in different stages of seed development process. The results from this study provide significant insight and elevate our understanding on genetic architecture of TSW trait in linseed.
Collapse
Affiliation(s)
- Ankit Saroha
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sunil S. Gomashe
- ICAR-National Bureau of Plant Genetic Resources, Regional Station Akola, Maharashtra, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deepa Pal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shraddha Ujjainwal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - J. Aravind
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
14
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
15
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
16
|
Jaramillo-Botero A, Colorado J, Quimbaya M, Rebolledo MC, Lorieux M, Ghneim-Herrera T, Arango CA, Tobón LE, Finke J, Rocha C, Muñoz F, Riascos JJ, Silva F, Chirinda N, Caccamo M, Vandepoele K, Goddard WA. The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization. FRONTIERS IN PLANT SCIENCE 2022; 13:992663. [PMID: 36311093 PMCID: PMC9614048 DOI: 10.3389/fpls.2022.992663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools to discover complex underlying structure-function associations, which are then carried over to the production of new germplasm with improved agricultural traits. Here, we describe OMICAS' R&D trans-disciplinary multi-project architecture, explain the overall strategy and methods for crop-breeding, recent progress and results, and the overarching challenges that lay ahead in the field.
Collapse
Affiliation(s)
- Andres Jaramillo-Botero
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
| | - Julian Colorado
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería, Departamento de Ingeniería Electrónica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mauricio Quimbaya
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | - Maria Camila Rebolledo
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mathias Lorieux
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Thaura Ghneim-Herrera
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | - Carlos A. Arango
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Químicas, Universidad Icesi, Cali, Colombia
| | - Luis E. Tobón
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Jorge Finke
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Camilo Rocha
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Fernando Muñoz
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - John J. Riascos
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - Fernando Silva
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - Ngonidzashe Chirinda
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mario Caccamo
- National Institute of Agricultural Botanics (NIAB), Cambridge, United Kingdom
| | - Klaas Vandepoele
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - William A. Goddard
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|