1
|
de Paula Correia DV, Rodak BW, Machado HA, Lopes G, Freitas DS. Beneficial or detrimental? How nickel application alters the ionome of soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112274. [PMID: 39343061 DOI: 10.1016/j.plantsci.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The use of nickel (Ni) in agriculture may represent one of the most significant cases of plant hormesis ever reported, as plants exhibit both positive and negative responses depending on the level of exposure to this element. For a more comprehensive understanding of this effect, the next step is to conduct studies on the dynamics of pre-existing chemical elements in the system (ionomic profile), especially when introducing Ni as a novel nutrient for the plants. This micronutrient is of particular interest to the fertilization of leguminous plants, such as the soybean, due to its additional effects on the biological nitrogen fixation process. This study thus evaluated the influence of five doses of Ni (0.0, 0.5, 1.0, 3.0, and 9.0 mg of Ni kg-1) on the ionomic profile of soybean genotypes using modern quantification techniques. The results revealed that the addition of Ni reduced the concentration of cationic micronutrients manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu), while it increased the concentration of macronutrients nitrogen (N) and magnesium (Mg). The application of Ni also resulted in a reduction of the potentially toxic element aluminum (Al). Correlations were also observed for these elements, indicating that Ni could be a controlling agent in elemental absorption and translocation. The ionome of the leaf tissues exhibited the most significant alterations, followed by the grains, nodules, and roots. Exogenous agronomic doses of Ni proved beneficial for the growth and production of soybean plants, although a genotypic effect was observed. The treatment with 9.0 mg of Ni kg-1, resulted in a new ionomic profile related to toxicity, demonstrating suboptimal plant development. Thus, the application of Ni in appropriate doses had a significant impact on the ionomic profile of soybeans, improving plant development and implying resistance to potentially toxic elements such as Al.
Collapse
Affiliation(s)
| | - Bruna Wurr Rodak
- Department of Agronomy, Paraná Federal Institute of Education, Science and Technology, Palmas, Paraná 85690-740, Brazil.
| | - Henrique Amorim Machado
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| | - Guilherme Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais 37200-000, Brazil.
| | - Douglas Siqueira Freitas
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| |
Collapse
|
2
|
Gajewska E, Witusińska A, Bernat P. Nickel-induced oxidative stress and phospholipid remodeling in cucumber leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112229. [PMID: 39151803 DOI: 10.1016/j.plantsci.2024.112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Nickel phytotoxicity has been attributed, among others, to oxidative stress. However, little is known about Ni-induced phospholipid modifications, including the oxidative ones. Accumulation of reactive oxygen species (ROS), antioxidative enzyme activities, malondialdehyde and the early lipid oxidation products contents, membrane permeability, phospholipid profile as well as phospholipid unsaturation degree were studied in the 1st and the 2nd leaves of hydroponically grown cucumber seedlings subjected to Ni stress. Compared to the 2nd leaf the 1st one showed stronger visual Ni toxicity symptoms, higher Ni, O2.- and H2O2 accumulation as well as greater enhancement in membrane permeability. Enzyme activities were differently influenced by Ni stress, however most pronounced changes were generally found in the 1st leaf. Ni treatment resulted in oxidation of leaf lipids, which was evidenced by appearance of increased contents of MDA and the early produced oxylipins. Among the latter 9-hydroxyoctadecatrienoic acid (9-HOTrE) and 13-hydroxyoctadecatrienoic acid (13-HOTrE) contents showed the most pronounced increase in response to Ni treatment. Exposure to the metal led to the changes in the leaf phospholipid profile and increased degree of phospholipid unsaturation. The obtained results have been discussed in relation to the difference in Ni stress severity between the 1st and the 2nd leaves.
Collapse
Affiliation(s)
- Ewa Gajewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Aleksandra Witusińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, Lodz 90-237, Poland.
| |
Collapse
|
3
|
Hussain MI, Khan ZI, Ahmad K, Naeem M, Ali MA, Elshikh MS, Zaman QU, Iqbal K, Muscolo A, Yang HH. Toxicity and bioassimilation of lead and nickel in farm ruminants fed on diversified forage crops grown on contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116812. [PMID: 39094457 DOI: 10.1016/j.ecoenv.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The cultivation of forage crops on wastewater-irrigated soils, while common in many developing countries, poses significant risks due to heavy metal pollution, particularly Lead (Pb) and Nickel (Ni). This practice, aimed at addressing water scarcity challenges and providing affordable irrigation, was investigated for its ecological and human health implications across three diverse sites (site A, site B, and site C). Our study unveiled increases in Pb concentrations in contaminated soil, cultivated with Sesbania bispinosa showing the highest Pb accumulation. The Ni concentrations ranged from 5.34 to 10.43 across all forage crop samples, with S. fruticosa from site C displaying the highest Ni concentration and S. bicolor from site A exhibiting the lowest. Trace element concentrations in the specimens were determined using an atomic absorption spectrophotometer. The Pb levels in the blood, hair, and feces of farm ruminants (cows, buffaloes, and sheep) varied across the sites, with buffaloes consistently displaying the highest Pb levels. Insights into daily Pb intake by ruminant's highlighted variations influenced by plant species, animal types, and sites, with site C, the cows exhibiting the highest Health Risk Index (HRI) associated with lead exposure from consuming forage crops. Soil and forage samples showed Pb concentrations ranging from 8.003 to 12.29 mg/kg and 6.69-10.52 mg/kg, respectively, emphasizing the severe health risks associated with continuous sewage usage. Variations in Ni concentrations across animal blood, hair, and feces samples underscored the importance of monitoring Ni exposure in livestock, with sheep at site B consistently showing the highest Ni levels. These findings highlight the necessity of vigilance in monitoring trace element (Pb and Ni) exposure in forage crops and livestock, to mitigate potential health risks associated with their consumption, with variations dependent on species, site, and trace element concentrations.
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Plant Biology & Soil Science, Universidad de Vigo, As Lagoas Marcosende, Vigo 36310, Spain.
| | | | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Pakistan
| | - Majida Naeem
- Department of Botany, University of Sargodha, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khalid Iqbal
- Office of Research, Innovation and Commercialization (ORIC), University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Adele Muscolo
- Department of Agriculture, Mediterranean University, Feo di Vito, Reggio Calabria 89122, Italy
| | - Hsi-Hsien Yang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, No. 168, Jifeng E. Rd., Wufeng District, Taichung 413310, Taiwan.
| |
Collapse
|
4
|
Shahid S, Dar A, Hussain A, Khalid I, Latif M, Ahmad HT, Mehmood T, Aloud SS. Enhancing cauliflower growth under cadmium stress: synergistic effects of Cd-tolerant Klebsiella strains and jasmonic acid foliar application. Front Microbiol 2024; 15:1444374. [PMID: 39220045 PMCID: PMC11363903 DOI: 10.3389/fmicb.2024.1444374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 μmol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.
Collapse
Affiliation(s)
- Shumila Shahid
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azhar Hussain
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khalid
- Department of Extension Education, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Latif
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Tanvir Ahmad
- National Cotton Breeding Institute, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Mehmood
- Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Saud S. Aloud
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Li Q, Zheng X, Chen M. Ecotoxicological effects of tungsten on celery ( Apium graveolens L) and pepper ( Capsicum spp.). PeerJ 2024; 12:e17601. [PMID: 38938608 PMCID: PMC11210458 DOI: 10.7717/peerj.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Background Tungsten (W) is an emerging heavy metal pollutant, yet research remains scarce on the biomonitor and sensitive biomarkers for W contamination. Methods In this study, celery and pepper were chosen as study subjects and subjected to exposure cultivation in solutions with five different levels of W. The physiological and biochemical toxicities of W on these two plants were systematically analyzed. The feasibility of utilizing celery and pepper as biomonitor organisms for W contamination was explored and indicative biomarkers were screened. Results The results indicated that W could inhibit plants' root length, shoot height, and fresh weight while concurrently promoting membrane lipid peroxidation. Additionally, W enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and total antioxidant capacity (TAOC) to counteract oxidative damage. From a physiological perspective, pepper exhibited potential as a biomonitor for W contamination. Biochemical indicators suggested that SOD could serve as a sensitive biomarker for W in celery, while TAOC and POD were more suitable for the roots and leaves of pepper. In conclusion, our study investigated the toxic effects of W on celery and pepper, contributing to the understanding of W's environmental toxicity. Furthermore, it provided insights for selecting biomonitor organisms and sensitive biomarkers for W contamination.
Collapse
Affiliation(s)
- Qi Li
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou, China
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| | - Xiaojun Zheng
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou, China
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, China
| | - Ming Chen
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou, China
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, China
| |
Collapse
|
6
|
Qu T, Ma Y, Yun M, Zhao C. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. PLANTS (BASEL, SWITZERLAND) 2024; 13:1287. [PMID: 38794358 PMCID: PMC11126081 DOI: 10.3390/plants13101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Melatonin (MT) plays an important role in alleviating the stress of soil heavy metal pollution on plants. However, its ability to improve the tolerance of Rhus typhina to Ni stress and its mechanism of action are still unclear. Therefore, MT (0, 50, 100, and 200 μmol·L-1) was sprayed on the leaf surface of R. typhina seedlings under Ni (0 and 250 mg·kg-1) stress to study the differences in growth, physiology, and gene expression. The results showed that exogenous MT could improve the ability of R. typhina to resist Ni stress by inhibiting the degradation of chlorophyll and carotenoid, enhancing photosynthesis, and augmenting the activity of antioxidant enzymes. Moreover, 100 μmol·L-1 MT could increase the Ni concentration in R. typhina seedlings and reduce the translocation factor. Transcriptome analysis showed that MT mainly regulated the expression of related genes in plant hormone signal transduction, starch and sucrose metabolism, and various amino acid metabolism pathways. This study combined physiological and transcriptomic analysis to reveal the molecular mechanism of MT enhancing Ni resistance in R. typhina, and provides a new direction for expanding its application in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (T.Q.); (Y.M.); (M.Y.)
| |
Collapse
|
7
|
Shu H, Xu K, Li X, Liu J, Altaf MA, Fu H, Lu X, Cheng S, Wang Z. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. PLANT CELL REPORTS 2024; 43:106. [PMID: 38532109 DOI: 10.1007/s00299-024-03196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Kaijing Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Xiangrui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
| | - Jiancheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
8
|
Ugurlar F, Kaya C. Synergistic mitigation of nickel toxicity in pepper ( Capsicum annuum) by nitric oxide and thiourea via regulation of nitrogen metabolism and subcellular nickel distribution. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1099-1116. [PMID: 37875021 DOI: 10.1071/fp23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Nickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.1mM, SNP) and 400mgL-1 Thi, alone and combined, were studied for their impact on pepper growth under Ni toxicity. Ni stress reduces chlorophyll, PSII efficiency and leaf water and sugar content. However, SNP and Thi alleviate these effects by increasing leaf water, proline and sugar content. It also increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Nickel stress lowered nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and protein content, but increased nitrate, ammonium and amino acid content. SNP and Thi enhanced nitrogen assimilation, increased protein content and improved pepper plant growth and physiological functions during Ni stress. The combined treatment reduced Ni accumulation, increased Ni in leaf cell walls and potentially in root vacuoles, and decreased Ni concentration in cell organelles. It effectively mitigated Ni toxicity to vital organelles, surpassing the effects of SNP or Thi use alone. This study provides valuable insights for addressing heavy metal contamination in agricultural soils and offers potential strategies for sustainable and eco-friendly farming practices.
Collapse
Affiliation(s)
- Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| |
Collapse
|
9
|
Shu H, Altaf MA, Mushtaq N, Fu H, Lu X, Zhu G, Cheng S, Wang Z. Physiological and Transcriptome Analysis of the Effects of Exogenous Strigolactones on Drought Responses of Pepper Seedlings. Antioxidants (Basel) 2023; 12:2019. [PMID: 38136139 PMCID: PMC10740728 DOI: 10.3390/antiox12122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Drought stress significantly restricts the growth, yield, and quality of peppers. Strigolactone (SL), a relatively new plant hormone, has shown promise in alleviating drought-related symptoms in pepper plants. However, there is limited knowledge on how SL affects the gene expression in peppers when exposed to drought stress (DS) after the foliar application of SL. To explore this, we conducted a thorough physiological and transcriptome analysis investigation to uncover the mechanisms through which SL mitigates the effects of DS on pepper seedlings. DS inhibited the growth of pepper seedlings, altered antioxidant enzyme activity, reduced relative water content (RWC), and caused oxidative damage. On the contrary, the application of SL significantly enhanced RWC, promoted root morphology, and increased leaf pigment content. SL also protected pepper seedlings from drought-induced oxidative damage by reducing MDA and H2O2 levels and maintaining POD, CAT, and SOD activity. Moreover, transcriptomic analysis revealed that differentially expressed genes were enriched in ribosomes, ABC transporters, phenylpropanoid biosynthesis, and Auxin/MAPK signaling pathways in DS and DS + SL treatment. Furthermore, the results of qRT-PCR showed the up-regulation of AGR7, ABI5, BRI1, and PDR4 and down-regulation of SAPK6, NTF4, PYL6, and GPX4 in SL treatment compared with drought-only treatment. In particular, the key gene for SL signal transduction, SMXL6, was down-regulated under drought. These results elucidate the molecular aspects underlying SL-mediated plant DS tolerance, and provide pivotal strategies for effectively achieving pepper drought resilience.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
10
|
Yılmaz H, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K, Yalçın E. DNA fragmentation, chromosomal aberrations, and multi-toxic effects induced by nickel and the modulation of Ni-induced damage by pomegranate seed extract in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110826-110840. [PMID: 37794225 DOI: 10.1007/s11356-023-30193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to assess the recovery effect of pomegranate seed extract (PSEx) against nickel (Ni)-induced damage in Allium cepa. Except for the control group treated with tap water, five experimental groups were exposed to 265 mg L-1 PSEx, 530 mg L-1 PSEx, 1 mg L-1 NiCI2, 265 mg L-1 PSEx + 1 mg L-1 NiCI2, and 530 mg L-1 PSEx + 1 mg L-1 NiCI2, respectively. The toxicity of Ni was examined through the analysis of physiological (germination percentage, weight gain, and root length), cytotoxicity (mitotic index), genotoxicity (micronucleus, chromosomal anomalies, and Comet test), and biochemical (malondialdehyde, proline, chlorophyll a and chlorophyll b contents, the activities of superoxide dismutase and catalase) parameters. Meristematic cell defects were also investigated. The NiCl2-DNA interaction was evaluated through spectral shift analysis. Values of all physiological parameters, mitotic index scores, and chlorophyll contents decreased while micronucleus frequency, DNA tail percentage, chromosomal anomalies, proline, MDA, and enzyme activities increased following Ni administration. According to the tail DNA percentage scale, Ni application caused "high damage" to DNA. Ni-induced chromosomal anomalies were fragment, sticky chromosome, vagrant chromosome, bridge, unbalanced chromatin distribution, reverse polarization, and nucleus with bud. NiCl2-DNA interaction caused a hyperchromic shift in the UV/Vis spectrum of DNA by spectral profile analysis. Ni exposure impaired root meristems as evidenced by the formation of epidermis cell damage, flattened cell nucleus, thickened cortex cell wall, and blurry vascular tissue. Substantial recovery was seen in all parameters with the co-administration of PSEx and Ni. Recovery effects in the parameters were 18-51% and 41-84% in the 265 mg L-1 PSEx + 1 mg L-1 NiCI2 and 530 mg L-1 PSEx + 1 mg L-1 NiCI2 groups, respectively. The Comet scale showed that PSEx applied with Ni reduced DNA damage from "high" to "moderate." Ni-induced thickened cortex cell wall and blurry vascular tissue damage disappeared completely when 530 mg L-1 PSEx was mixed with Ni. PSEx successfully reduced the negative effects of Ni, which can be attributed to its content of antioxidants and bioactive ingredients.
Collapse
Affiliation(s)
- Hüseyin Yılmaz
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye.
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| |
Collapse
|
11
|
Khan MN, Siddiqui MH, Alhussaen KM, El-Alosey AR, AlOmrani MAM, Kalaji HM. Titanium dioxide nanoparticles require K + and hydrogen sulfide to regulate nitrogen and carbohydrate metabolism during adaptive response to drought and nickel stress in cucumber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122008. [PMID: 37356795 DOI: 10.1016/j.envpol.2023.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Crop plants face severe yield losses worldwide owing to their exposure to multiple abiotic stresses. The study described here, was conducted to comprehend the response of cucumber seedlings to drought (induced by 15% w/v polyethylene glycol 8000; PEG) and nickel (Ni) stress in presence or absence of titanium dioxide nanoparticle (nTiO2). In addition, it was also investigated how nitrogen (N) and carbohydrate metabolism, as well as the defense system, are affected by endogenous potassium (K+) and hydrogen sulfide (H2S). Cucumber seedlings were subjected to Ni stress and drought, which led to oxidative stress and triggered the defense system. Under the stress, N and carbohydrate metabolism were differentially affected. Supplementation of the stressed seedlings with nTiO2 (15 mg L-1) enhanced the activity of antioxidant enzymes, ascorbate-glutathione (AsA-GSH) system and elevated N and carbohydrates metabolism. Application of nTiO2 also enhanced the accumulation of phytochelatins and activity of the enzymes of glyoxalase system that provided additional protection against the metal and toxic methylglyoxal. Osmotic stress brought on by PEG and Ni, was countered by the increase of proline and carbohydrates levels, which helped the seedlings keep their optimal level of hydration. Application nTiO2 improved the biosynthesis of H2S and K+ retention through regulating Cys biosynthesis and H+-ATPase activity, respectively. Observed outcomes lead to the conclusion that nTiO2 maintains redox homeostasis, and normal functioning of N and carbohydrates metabolism that resulted in the protection of cucumber seedlings against drought and Ni stress. Use of 20 mM tetraethylammonium chloride (K+- channel blocker), 500 μM sodium orthovanadate (PM H+-ATPase inhibitor), and 1 mM hypotaurine (H2S scavenger) demonstrate that endogenous K+ and H2S were crucial for the nTiO2-induced modulation of plants' adaptive responses to the imposed stress.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Alaa Rafat El-Alosey
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
12
|
Zeiner M, Fiedler H, Juranović Cindrić I, Nemet I, Toma D, Habinovec I. Preliminary Study of Pepper Types Based on Multielement Content Combined with Chemometrics. Foods 2023; 12:3132. [PMID: 37628131 PMCID: PMC10453101 DOI: 10.3390/foods12163132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Different types of pepper (Piper nigrum L.) and cayenne pepper (Capsicum annuum L.) are widely used spices that exhibit therapeutic properties in addition to nutritional properties. In order to characterize these foods in further detail, the content of macro- (Ca, K, Mg, Na) and microelements (Ag, Al, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, Li, Mn, Mo, Ni, Pb, Rb, Se, Sr, Te, Tl, V and Zn) of four pepper types was determined via inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion using nitric acid and hydrogen peroxide. The obtained results were then evaluated using chemometric methods. The content of macroelements and microelements lies in the expected ranges for such spices but differs significantly between different types. The content of macro- and microelements is characteristic for pepper types originating from different plant species, but also based on further processing. Whilst green and black pepper are similar to each other, clearly diverse patterns are obtained for white pepper (different processing method) and cayenne pepper (different plant species).
Collapse
Affiliation(s)
- Michaela Zeiner
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden;
| | - Heidelore Fiedler
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden;
| | - Iva Juranović Cindrić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.J.C.); (I.N.); (I.H.)
| | - Ivan Nemet
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.J.C.); (I.N.); (I.H.)
| | - Doris Toma
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.J.C.); (I.N.); (I.H.)
| | - Iva Habinovec
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.J.C.); (I.N.); (I.H.)
| |
Collapse
|
13
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
14
|
Altaf MA, Hao Y, Shu H, Mumtaz MA, Cheng S, Alyemeni MN, Ahmad P, Wang Z. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131468. [PMID: 37146338 DOI: 10.1016/j.jhazmat.2023.131468] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | | | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
15
|
Zhao J, Hu J. Melatonin: Current status and future perspectives in horticultural plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1140803. [PMID: 37035081 PMCID: PMC10076644 DOI: 10.3389/fpls.2023.1140803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses, restricting plant growth and productivity and posing a severe threat to global food production and security. Different phytohormones are produced by plants to mitigate the adverse effects of these stresses. One such phytohormone is melatonin (MEL), which, being a potential bio-stimulator, helps to govern a wide array of functions in horticultural crops. Recent advancements have determined the role of MEL in plants' responses to abiotic stresses. MEL enhances physiological functions such as seed germination, growth and development, seedling growth, root system architecture, and photosynthetic efficiency. The potential function of MEL in stressful environments is to regulate the enzymatic and non-enzymatic antioxidant activity, thus playing a role in the substantial scavenging of reactive oxygen species (ROS). Additionally, MEL, as a plant growth regulator and bio-stimulator, aids in promoting plant tolerance to abiotic stress, mainly through improvements in nutrient uptake, osmolyte production, and cellular membrane stability. This review, therefore, focuses on the possible functions of MEL in the induction of different abiotic stresses in horticultural crops. Therefore, this review would help readers learn more about MEL in altered environments and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
|
16
|
Melatonin Affects the Photosynthetic Performance of Pepper ( Capsicum annuum L.) Seedlings under Cold Stress. Antioxidants (Basel) 2022; 11:antiox11122414. [PMID: 36552621 PMCID: PMC9774265 DOI: 10.3390/antiox11122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Photosynthesis is an important plant metabolic mechanism that improves carbon absorption and crop yield. Photosynthetic efficiency is greatly hampered by cold stress (CS). Melatonin (ME) is a new plant growth regulator that regulates a wide range of abiotic stress responses. However, the molecular mechanism of ME-mediated photosynthetic regulation in cold-stressed plants is not well understood. Our findings suggest that under low-temperature stress (15/5 °C for 7 days), spraying the plant with ME (200 µM) enhanced gas exchange characteristics and the photosynthetic pigment content of pepper seedlings, as well as upregulated their biosynthetic gene expression. Melatonin increased the activity of photosynthetic enzymes (Rubisco and fructose-1, 6-bisphosphatase) while also enhancing starch, sucrose, soluble sugar, and glucose content under CS conditions. Low-temperature stress significantly decreased the photochemical activity of photosystem II (PSII) and photosystem I (PSI), specifically their maximum quantum efficiency PSII (Fv/Fm) and PSI (Pm). In contrast, ME treatment improved the photochemical activity of PSII and PSI. Furthermore, CS dramatically reduced the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while enhancing nonphotochemical quenching (NPQ); however, ME treatment substantially mitigated the effects of CS. Our results clearly show the probable function of ME treatment in mitigating the effects of CS by maintaining photosynthetic performance, which might be beneficial when screening genotypes for CS tolerance.
Collapse
|