1
|
Dhillon HK, Sharma M, Dhatt AS, Meena OP, Khosa J, Sidhu MK. Insights into cellular crosstalk regulating cytoplasmic male sterility and fertility restoration. Mol Biol Rep 2024; 51:910. [PMID: 39150575 DOI: 10.1007/s11033-024-09855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Cytoplasmic male sterility has been a popular genetic tool in development of hybrids. The molecular mechanism behind maternal sterility varies from crop to crop. An understanding of underlying mechanism can help in development of new functional CMS gene in crops which lack effective and stable CMS systems. In crops where seed or fruit is the commercial product, fertility must be recovered in F1 hybrids so that higher yield gains can be realized. This necessitates the presence of fertility restorer gene (Rf) in nucleus of male parent to overcome the effect of sterile cytoplasm. Fertility restoring genes have been identified in crops like wheat, maize, sunflower, rice, pepper, sugar beet, pigeon pea etc. But in crops like eggplant, bell pepper, barley etc. unstable fertility restorers hamper the use of Cytoplasmic genic male sterility (CGMS) system. Stability of CGMS system is influenced by environment, genetic background or interaction of these factors. This review thus aims to understand the genetic mechanisms controlling mitochondrial-nuclear interactions required to design strong and stable restorers without any pleiotropic effects in F1 hybrids.
Collapse
Affiliation(s)
- Harnoor Kaur Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - A S Dhatt
- Director of Research, Punjab Agricultural University, Ludhiana, 141004, India
| | - O P Meena
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - M K Sidhu
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
2
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
3
|
Zhang M, Zhang X, Wang R, Zang R, Guo L, Qi T, Tang H, Chen L, Wang H, Qiao X, Wu J, Xing C. Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress. Biol Res 2023; 56:58. [PMID: 37941013 PMCID: PMC10634144 DOI: 10.1186/s40659-023-00465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Rong Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
4
|
Zang R, Shahzad K, Zhang X, Guo L, Qi T, Tang H, Wang R, Wang H, Qiao X, Zhang M, Wu J, Xing C. Dose effects of restorer gene modulate pollen fertility in cotton CMS-D2 restorer lines via auxin signaling and flavonoid biosynthesis. PLANT CELL REPORTS 2023; 42:1705-1719. [PMID: 37715064 DOI: 10.1007/s00299-023-03053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 09/17/2023]
Abstract
KEY MESSAGE Dose effects of Rf1 gene regulated retrieval mechanism of pollen fertility for CMS-D2 cotton. Cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) is an economical pollination control system for producing hybrid cotton seeds compared to artificial and chemical emasculation methods. However, the unstable restoring ability of restorer lines is a main barrier in the large-scale application of "three-line" hybrid cotton in China. Our phenotypic investigation determined that the homozygous Rf1Rf1 allelic genotype had a stronger ability to generate fertile pollen than the heterozygous Rf1rf1 allelic genotype. To decipher the genetic mechanisms that control the differential levels of pollen fertility, an integrated metabolomic and transcriptomic analysis was performed at two environments using pollen grains of four cotton genotypes differing in Rf1 alleles or cytoplasm. Totally 5,391 differential metabolite features were detected, and 369 specific differential metabolites (DMs) were identified between homozygous and heterozygous Rf1 allelic genotypes with CMS-D2 cytoplasm. In addition, transcriptome analysis identified 2,490 differentially expressed genes (DEGs) and 96 unique hub DEGs with dynamic regulation in this comparative combination. Further integrated analyses revealed that several key DEGs and DMs involved in indole biosynthesis, flavonoid biosynthesis, and sugar metabolism had strong network linkage with fertility restoration. In vitro application of auxin analogue NAA and inhibitor Auxinole confirmed that over-activated auxin signaling might inhibit pollen development, whereas suppressing auxin signaling partially promoted pollen development in CMS-D2 cotton. Our results provide new insight into how the dosage effects of the Rf1 gene regulate pollen fertility of CMS-D2 cotton.
Collapse
Affiliation(s)
- Rong Zang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
5
|
Song X, Zhang M, Shahzad K, Zhang X, Guo L, Qi T, Tang H, Wang H, Qiao X, Feng J, Han Y, Xing C, Wu J. Comparative Transcriptome Profiling of CMS-D2 and CMS-D8 Systems Characterizes Fertility Restoration Genes Network in Upland Cotton. Int J Mol Sci 2023; 24:10759. [PMID: 37445936 DOI: 10.3390/ijms241310759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Resolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes Rf1 or Rf2. Target comparative analysis revealed a higher percentage of differential genes in each restorer line as compared to their corresponding sterile and maintainer lines. An array of genes with specific expression in the restorer line of CMS-D2 had functional annotations related to floral development and pathway enrichments in various secondary metabolites, while specifically expressed genes in the CMS-D8 restorer line showed functional annotations related to anther development and pathway enrichment in the biosynthesis of secondary metabolites. Further analysis identified potentially key genes located in the target region of fertility restorer genes Rf1 or Rf2. In particular, Ghir_D05G032450 can be the candidate gene related to restorer gene Rf1, and Ghir_D05G035690 can be the candidate gene associated with restorer gene Rf2. Further gene expression validation with qRT-PCR confirmed the accuracy of our results. Our findings provide useful insights into decoding the potential regulatory network that retrieves pollen fertility in cotton and will help to further reveal the differences in the genetic basis of fertility restoration for two CMS systems.
Collapse
Affiliation(s)
- Xiatong Song
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juanjuan Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yang Han
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jianyong Wu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
6
|
Development of mitochondrial simple sequence repeat markers to simultaneously distinguish cytoplasmic male sterile sources in cotton. Funct Integr Genomics 2022; 23:25. [PMID: 36576593 DOI: 10.1007/s10142-022-00922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G. hirsutum (CMS-(AD)1), G. barbadense (CMS-(AD)2), G. harknessii (CMS-D2), and G. trilobum (CMS-D8) cytoplasms were first created by multiple backcrosses with common genotype Shikang126. Then, 64 pairs of mitochondrial simple sequence repeat (mtSSR) markers were designed to explore the mitochondrial DNA diversities among four isonuclear-alloplasmic cotton male sterile lines, and a total of nine pairs of polymorphic mtSSR molecular markers were successfully developed. Polymorphism analysis indicated that mtSSR59 marker correlated to the atp1 gene could effectively divide the CMS-D2, CMS-(AD)1, and CMS-(AD)2 in one category while the CMS-D8 in another category. Further cytological observation and determination of ATP contents also confirmed the accurate classification of CMS-D2 and CMS-D8 lines. Moreover, the mtSSR59 marker was successfully applied in the marker-assisted selection (MAS) for breeding new male sterile lines and precise differentiation or purity identification of different CMS-based "three-line" and conventional cotton hybrids. This study provides new technical measures for classifying various cytoplasmic sterile lines, and our results will significantly improve the efficiency of there-line hybrid breeding in cotton.
Collapse
|