1
|
Xu J, Wang Y. Generating Multistate Conformations of P-type ATPases with a Conditional Diffusion Model. J Chem Inf Model 2024; 64:9227-9239. [PMID: 39480276 DOI: 10.1021/acs.jcim.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. Here, we introduce a computational approach to generate diverse and biologically relevant conformations of membrane proteins using a conditional diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically targeted the P-type ATPases, a critical family of membrane transporters, and constructed a comprehensive data set through a combination of experimental structures and molecular dynamics simulations. Our model, incorporating a graph neural network with specialized membrane constraints, demonstrates exceptional accuracy in generating a wide range of P-type ATPase conformations associated with different functional states. This approach represents a meaningful step forward in the computational generation of membrane protein conformations using AI and holds promise for studying the dynamics of other membrane proteins.
Collapse
Affiliation(s)
- Jingtian Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Villagrana R, López-Marqués RL. Plant P4-ATPase lipid flippases: How are they regulated? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119599. [PMID: 37741575 DOI: 10.1016/j.bbamcr.2023.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
P4 ATPases are active membrane transporters that translocate lipids towards the cytosolic side of the biological membranes in eukaryotic cells. Due to their essential cellular functions, P4 ATPase activity is expected to be tightly controlled, but fundamental aspects of the regulation of plant P4 ATPases remain unstudied. In this mini-review, our knowledge of the regulatory mechanisms of yeast and mammalian P4 ATPases will be summarized, and sequence comparison and structural modelling will be used as a basis to discuss the putative regulation of the corresponding plant lipid transporters.
Collapse
Affiliation(s)
- Richard Villagrana
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Kotlova ER, Senik SV, Pozhvanov GA, Prokopiev IA, Boldyrev IA, Manzhieva BS, Amigud EY, Puzanskiy RK, Khakulova AA, Serebryakov EB. Uptake and Metabolic Conversion of Exogenous Phosphatidylcholines Depending on Their Acyl Chain Structure in Arabidopsis thaliana. Int J Mol Sci 2023; 25:89. [PMID: 38203257 PMCID: PMC10778594 DOI: 10.3390/ijms25010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Fungi and plants are not only capable of synthesizing the entire spectrum of lipids de novo but also possess a well-developed system that allows them to assimilate exogenous lipids. However, the role of structure in the ability of lipids to be absorbed and metabolized has not yet been characterized in detail. In the present work, targeted lipidomics of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs), in parallel with morphological phenotyping, allowed for the identification of differences in the effects of PC molecular species introduced into the growth medium, in particular, typical bacterial saturated (14:0/14:0, 16:0/16:0), monounsaturated (16:0/18:1), and typical for fungi and plants polyunsaturated (16:0/18:2, 18:2/18:2) species, on Arabidopsis thaliana. For comparison, the influence of an artificially synthesized (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, which is close in structure to archaeal lipids, was studied. The phenotype deviations stimulated by exogenous lipids included changes in the length and morphology of both the roots and leaves of seedlings. According to lipidomics data, the main trends in response to exogenous lipid exposure were an increase in the proportion of endogenic 18:1/18:1 PC and 18:1_18:2 PC molecular species and a decrease in the relative content of species with C18:3, such as 18:3/18:3 PC and/or 16:0_18:3 PC, 16:1_18:3 PE. The obtained data indicate that exogenous lipid molecules affect plant morphology not only due to their physical properties, which are manifested during incorporation into the membrane, but also due to the participation of exogenous lipid molecules in the metabolism of plant cells. The results obtained open the way to the use of PCs of different structures as cellular regulators.
Collapse
Affiliation(s)
- Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Gregory A. Pozhvanov
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Ilya A. Prokopiev
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ivan A. Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Bairta S. Manzhieva
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ekaterina Ya. Amigud
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Roman K. Puzanskiy
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Anna A. Khakulova
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| | - Evgeny B. Serebryakov
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| |
Collapse
|