1
|
Kimura S, Ong J, Kasai A, Akada S, Ebina H, Sasabe M, Morita E. Human parvovirus B19 virus-like particle formation in Nicotiana benthamiana. Protein Expr Purif 2025; 226:106616. [PMID: 39488237 DOI: 10.1016/j.pep.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
There has been a surge in the interest to utilize plants as hosts for producing vaccine antigens. In this study, we demonstrated the successful expression of the human parvovirus B19 (B19V) capsid protein (VP2) in Nicotiana benthamiana cells. The B19V VP1 and VP2 genes were cloned under the control of estrogen-inducible promoters and transiently expressed in N. benthamiana leaves using the agroinfiltration method. The addition of estrogen significantly boosted the expression of VP2. Furthermore, codon optimization of the VP2 sequence resulted in over a 30-fold increase in its expression compared with that of the wild-type. Analysis of negatively stained samples by sucrose density gradient ultracentrifugation and electron microscopy revealed that the expressed VP2 proteins formed spherical particles with diameters of approximately 20 nm. Immunostaining analysis of protoplasts derived from VP2-expressing N. benthamiana leaves indicated that VP2 signals were predominantly localized in the cytoplasm. These findings strongly suggested that B19V VP2 assembles and formed virus-like particles (VLPs) within the cytoplasm of N. benthamiana cells, presenting a promising method for producing B19V VLPs in plant systems.
Collapse
Affiliation(s)
- Sakika Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Jiahui Ong
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Atsushi Kasai
- Department of Applied Biology and Food Science, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Shinji Akada
- Department of Applied Biology and Food Science, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Suita, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan.
| |
Collapse
|
2
|
Amoia CF, Chengula AA, Hakizimana JN, Wambura PN, Munir M, Misinzo G, Weger-Lucarelli J. Development of a genotype-matched Newcastle disease DNA vaccine candidate adjuvanted with IL-28b for the control of targeted velogenic strains of Newcastle disease virus in Africa. Vet Res Commun 2024; 49:33. [PMID: 39585481 PMCID: PMC11588948 DOI: 10.1007/s11259-024-10590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Newcastle disease virus (NDV) is an extremely contagious and deadly virus that affects numerous bird species, posing serious threats to poultry production on a global scale. In addition to implementing biosecurity practices in farming systems, vaccination remains the most effective means of controlling Newcastle disease (ND). However, while existing commercial vaccines provide some level of protection, the effectiveness of these vaccines can be questionable, particularly in field settings where the complexity of vaccination program implementation poses significant challenges, especially against virulent genotypes of NDV. A genotype-matched NDV DNA vaccine could potentially offer a more effective vaccination approach than currently available live attenuated vaccines. By being specifically tailored to match circulating strains, such a vaccine might improve efficacy and reduce the risk of vaccine failure due to genotype mismatch. To develop an alternative vaccine approach, two ND DNA vaccines were constructed in this study. Each vaccine developed in this study contains the fusion (F) and haemagglutinin-neuraminidase (HN) genes of a virulent NDV genotype VII isolate from Tanzania. Interferon lambda-3 (IFNλ3; IL-28b), which has demonstrated capacity to significantly enhance specific adaptive immune responses and decreased levels of inflammatory cytokines, as well as improved protective responses at a high viral challenge dose, was included in one of the developed vaccines. These plasmids were designated pTwist-F-HN-VII-IL28b and pTwist-F-HN-VII. The two plasmids differed in that pTwist-F-HN-VII-IL28b contained the cytokine adjuvant IL-28b. Transfection of cells and subsequent immunofluorescence assays indicated that both plasmids expressed high levels of NDV F-HN proteins. In vivo immunization demonstrated that chicks intramuscularly immunized with pTwist-F-HN-VII-IL28b exhibited significant immune responses compared to chicks immunized with pTwist-F-HN-VII or the commonly used LaSota vaccine (LaSota), which was used as a control. The protective efficacy of pTwist-F-HN-VII-IL28b was 80% after challenge with the highly virulent NDV strain ON148423, compared to 60% for chicks vaccinated using LaSota, and pTwist-F-HN-VII. The findings of this study indicate that IL-28b can be employed as a molecular adjuvant for NDV vaccines. This study represents a key milestone in Newcastle disease vaccine research, particularly in the development of a genotype-matched DNA vaccine candidate. Additionally, this study demonstrated that the combination of F, HN, and IL-28b elicits an efficacious immune response against virulent NDV strains.
Collapse
Affiliation(s)
- Charlie F Amoia
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, 67125, Tanzania.
- SACIDS Foundation for One Health, SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P. O. Box 3297, Morogoro, 67125, Tanzania.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.
| | - Augustino A Chengula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, 67125, Tanzania
| | - Jean N Hakizimana
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P. O. Box 3297, Morogoro, 67125, Tanzania
| | - Philemon N Wambura
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, 67125, Tanzania
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, 67125, Tanzania
- SACIDS Foundation for One Health, SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P. O. Box 3297, Morogoro, 67125, Tanzania
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P. O. Box 3297, Morogoro, 67125, Tanzania
| | - James Weger-Lucarelli
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
3
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|