1
|
Mudau M, Chinma CE, Ledbetter M, Wilkin J, Adebo OA. Gas chromatography-mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J Food Sci 2024; 89:6394-6412. [PMID: 39219001 DOI: 10.1111/1750-3841.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Metabolite profiling is an analytical technique used to assess metabolites in complex biological samples. This technique allows for the identification of both targeted and untargeted metabolites. In this study, the effect of traditional (fermentation and malting) and novel processing (ultrasonication) on the metabolites of finger millet (FM) and Bambara groundnut (BGN) flour was investigated using gas chromatography-mass spectrometry. Various metabolite classes, including amino acids, alcohol, aldehyde, organic acid, ester, fatty acids, glycoside, and sugar, were identified in FM and BGN flours. The adopted processing techniques impacted metabolite composition, as evidenced by substantial variations in volatile compound levels and metabolite composition among the FM and BGN samples before and after traditional and novel processing. Important health-promoting compounds, such as oleic acid, linoelaidic acid, and linoleic acid, were identified at their highest levels in fermented FM and BGN flours. The results obtained from this study offer an important context for monitoring and regulating the metabolite composition of FM and BGN flours under traditional and novel processing. PRACTICAL APPLICATION: Fermentation, malting, and ultrasonication induced desirable changes in some health-promoting compounds of finger millet and Bambara groundnut flours. The food and pharmaceutical industries could benefit from these traditional- and novel-modified flours as they could be used as improved food sources with health benefits.
Collapse
Affiliation(s)
- Masala Mudau
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Chiemela Enyinnaya Chinma
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Cervini M, Lobuono C, Volpe F, Curatolo FM, Scazzina F, Dall’Asta M, Giuberti G. Replacement of Native with Malted Triticale (x Triticosecale Wittmack) Flour in Dry Pasta: Technological and Nutritional Implications. Foods 2024; 13:2315. [PMID: 39123507 PMCID: PMC11312214 DOI: 10.3390/foods13152315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
The use of native and malted triticale (MT) flour in dry pasta has been limited despite the potential of triticale in cereal-based food production. In this study, triticale-based dry spaghetti with increasing levels of substitution (0, 25, 50, and 75 g/100 g w/w) of MT flour were formulated and analyzed. Samples were analyzed for technological and nutritional traits, including the in vitro starch and protein digestions. The gradual substitution of native triticale flour with MT increased (p < 0.05) the total dietary fiber content, whereas total starch decreased (p < 0.05). Adding MT flour increased the cooking loss and the stickiness of cooked pasta (p < 0.05). Using MT flour modulated the in vitro starch digestion, lowering the slowly digestible and resistant starch contents. The in vitro protein digestibility was positively affected using MT at the highest substitution level. Overall, MT could be used to formulate dry pasta products being the substitution to native triticale up to 50 g/100 g, a good compromise between nutritional quality and technological characteristics.
Collapse
Affiliation(s)
- Mariasole Cervini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| | - Chiara Lobuono
- Department of Food and Drug, University of Parma, 43125 Parma, Italy; (C.L.); (F.S.)
| | - Federica Volpe
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Francesco Matteo Curatolo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Francesca Scazzina
- Department of Food and Drug, University of Parma, 43125 Parma, Italy; (C.L.); (F.S.)
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| |
Collapse
|
3
|
O’Lone C, Juhász A, Nye-Wood M, Moody D, Dunn H, Ral JP, Colgrave ML. Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10149-10161. [PMID: 38635353 PMCID: PMC11066872 DOI: 10.1021/acs.jafc.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.
Collapse
Affiliation(s)
- Clare
E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - David Moody
- InterGrain
Pty Ltd, Bibra
Lake 6163, Western Australia, Australia
| | - Hugh Dunn
- Pilot
Malting Australia, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Jean-Philippe Ral
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, St Lucia 4067, Queensland, Australia
| |
Collapse
|
4
|
Martusevice P, Li X, Hengel MJ, Wang SC, Fox GP. A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7618-7628. [PMID: 38538519 DOI: 10.1021/acs.jafc.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.
Collapse
Affiliation(s)
- Paulina Martusevice
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas 58344, Lithuania
- Botanical Garden, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Matt J Hengel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Glen P Fox
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
O'Lone CE, Juhász A, Nye-Wood M, Dunn H, Moody D, Ral JP, Colgrave ML. Proteomic exploration reveals a metabolic rerouting due to low oxygen during controlled germination of malting barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1305381. [PMID: 38186599 PMCID: PMC10771735 DOI: 10.3389/fpls.2023.1305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Barley (Hordeum vulgare L.) is used in malt production for brewing applications. Barley malting involves a process of controlled germination that modifies the grain by activating enzymes to solubilize starch and proteins for brewing. Initially, the grain is submerged in water to raise grain moisture, requiring large volumes of water. Achieving grain modification at reduced moisture levels can contribute to the sustainability of malting practices. This study combined proteomics, bioinformatics, and biochemical phenotypic analysis of two malting barley genotypes with observed differences in water uptake and modification efficiency. We sought to reveal the molecular mechanisms at play during controlled germination and explore the roles of protein groups at 24 h intervals across the first 72 h. Overall, 3,485 protein groups were identified with 793 significant differentially abundant (DAP) within and between genotypes, involved in various biological processes, including protein synthesis, carbohydrate metabolism, and hydrolysis. Functional integration into metabolic pathways, such as glycolysis, pyruvate, starch and sucrose metabolism, revealed a metabolic rerouting due to low oxygen enforced by submergence during controlled germination. This SWATH-MS study provides a comprehensive proteome reference, delivering new insights into the molecular mechanisms underlying the impacts of low oxygen during controlled germination. It is concluded that continued efficient modification of malting barley subjected to submergence is largely due to the capacity to reroute energy to maintain vital processes, particularly protein synthesis.
Collapse
Affiliation(s)
- Clare E. O'Lone
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Mitchell Nye-Wood
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Hugh Dunn
- Pilot Malting Australia, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - David Moody
- Barley Breeding, InterGrain Pty Ltd, Bibra Lake, WA, Australia
| | - Jean-Philippe Ral
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Michelle L. Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|