1
|
Hocq L, Habrylo O, Sénéchal F, Voxeur A, Pau-Roblot C, Safran J, Fournet F, Bassard S, Battu V, Demailly H, Tovar JC, Pilard S, Marcelo P, Savary BJ, Mercadante D, Njo MF, Beeckman T, Boudaoud A, Gutierrez L, Pelloux J, Lefebvre V. Mutation of AtPME2, a pH-Dependent Pectin Methylesterase, Affects Cell Wall Structure and Hypocotyl Elongation. PLANT & CELL PHYSIOLOGY 2024; 65:301-318. [PMID: 38190549 DOI: 10.1093/pcp/pcad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Josip Safran
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Françoise Fournet
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Virginie Battu
- Plant Reproduction and Development Laboratory, ENS de Lyon UMR 5667, BP 7000, Lyon cedex 07 69342, France
| | - Hervé Demailly
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - José C Tovar
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Serge Pilard
- Analytical Platform (PFA), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Paulo Marcelo
- Cellular imaging and protein analysis platform (ICAP), University of Picardie, Avenue Laënnec,CHU Sud, CURS, Amiens cedex 1 80054, France
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maria Fransiska Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Arezki Boudaoud
- Hydrodynamics Laboratory, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Laurent Gutierrez
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
2
|
Siemianowski O, Rongpipi S, Del Mundo JT, Freychet G, Zhernenkov M, Gomez ED, Gomez EW, Anderson CT. Flexible Pectin Nanopatterning Drives Cell Wall Organization in Plants. JACS AU 2024; 4:177-188. [PMID: 38274264 PMCID: PMC10806874 DOI: 10.1021/jacsau.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Plant cell walls are abundant sources of materials and energy. Nevertheless, cell wall nanostructure, specifically how pectins interact with cellulose and hemicelluloses to construct a robust and flexible biomaterial, is poorly understood. X-ray scattering measurements are minimally invasive and can reveal ultrastructural, compositional, and physical properties of materials. Resonant X-ray scattering takes advantage of compositional differences by tuning the energy of the incident X-ray to absorption edges of specific elements in a material. Using Tender Resonant X-ray Scattering (TReXS) at the calcium K-edge to study hypocotyls of the model plant, Arabidopsis thaliana, we detected distinctive Ca features that we hypothesize correspond to previously unreported Ca-Homogalacturonan (Ca-HG) nanostructures. When Ca-HG structures were perturbed by chemical and enzymatic treatments, cellulose microfibrils were also rearranged. Moreover, Ca-HG nanostructure was altered in mutants with abnormal cellulose, pectin, or hemicellulose content. Our results indicate direct structural interlinks between components of the plant cell wall at the nanoscale and reveal mechanisms that underpin both the structural integrity of these components and the molecular architecture of the plant cell wall.
Collapse
Affiliation(s)
- Oskar Siemianowski
- Department
of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Faculty of
Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096 Warszawa, Poland
| | - Sintu Rongpipi
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Joshua T. Del Mundo
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Guillaume Freychet
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Mikhail Zhernenkov
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Enrique D. Gomez
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Esther W. Gomez
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Biomedical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Charles T. Anderson
- Department
of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|