1
|
Chen Q, Kenett YN, Cui Z, Takeuchi H, Fink A, Benedek M, Zeitlen DC, Zhuang K, Lloyd-Cox J, Kawashima R, Qiu J, Beaty RE. Dynamic switching between brain networks predicts creative ability. Commun Biol 2025; 8:54. [PMID: 39809882 PMCID: PMC11733278 DOI: 10.1038/s42003-025-07470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Creativity is hypothesized to arise from a mental state which balances spontaneous thought and cognitive control, corresponding to functional connectivity between the brain's Default Mode (DMN) and Executive Control (ECN) Networks. Here, we conduct a large-scale, multi-center examination of this hypothesis. Employing a meta-analytic network neuroscience approach, we analyze resting-state fMRI and creative task performance across 10 independent samples from Austria, Canada, China, Japan, and the United States (N = 2433)-constituting the largest and most ethnically diverse creativity neuroscience study to date. Using time-resolved network analysis, we investigate the relationship between creativity (i.e., divergent thinking ability) and dynamic switching between DMN and ECN. We find that creativity, but not general intelligence, can be reliably predicted by the number of DMN-ECN switches. Importantly, we identify an inverted-U relationship between creativity and the degree of balance between DMN-ECN switching, suggesting that optimal creative performance requires balanced brain network dynamics. Furthermore, an independent task-fMRI validation study (N = 31) demonstrates higher DMN-ECN switching during creative idea generation (compared to a control condition) and replicates the inverted-U relationship. Therefore, we provide robust evidence across multi-center datasets that creativity is tied to the capacity to dynamically switch between brain networks supporting spontaneous and controlled cognition.
Collapse
Affiliation(s)
- Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Andreas Fink
- Department of Psychology, University of Graz, Graz, Austria
| | | | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaixiang Zhuang
- IInstitute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - James Lloyd-Cox
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Kapustianyk G, Durbin A, Shukor A, Law S. Beyond Diagnosis and Comorbidities-A Scoping Review of the Best Tools to Measure Complexity for Populations with Mental Illness. Diagnostics (Basel) 2024; 14:1300. [PMID: 38928714 PMCID: PMC11203348 DOI: 10.3390/diagnostics14121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Beyond the challenges of diagnosis, complexity measurement in clients with mental illness is an important but under-recognized area. Accurate and appropriate psychiatric diagnoses are essential, and further complexity measurements could contribute to improving patient understanding, referral, and service matching and coordination, outcome evaluation, and system-level care planning. Myriad conceptualizations, frameworks, and definitions of patient complexity exist, which are operationalized by a variety of complexity measuring tools. A limited number of these tools are developed for people with mental illness, and they differ in the extent to which they capture clinical, psychosocial, economic, and environmental domains. Guided by the PRISMA Extension for Scoping Reviews, this review evaluates the tools best suited for different mental health settings. The search found 5345 articles published until November 2023 and screened 14 qualified papers and corresponding tools. For each of these, detailed data on their use of psychiatric diagnostic categories, definition of complexity, primary aim and purpose, context of use and settings for their validation, best target populations, historical references, extent of biopsychosocial information inclusion, database and input technology required, and performance assessments were extracted, analyzed, and presented for comparisons. Two tools-the INTERMED, a clinician-scored and multiple healthcare data-sourced tool, and the VCAT, a computer-based instrument that utilizes healthcare databases to generate a comprehensive picture of complexity-are exemplary among the tools reviewed. Information on these limited but suitable tools related to their unique characteristics and utilities, and specialized recommendations for their use in mental health settings could contribute to improved patient care.
Collapse
Affiliation(s)
- Grace Kapustianyk
- St. Michael’s Hospital, 17th Floor, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Anna Durbin
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Ali Shukor
- Department of Public and Occupational Health, Amsterdam University Medical Center (UMC), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Samuel Law
- Department of Psychiatry, University of Toronto, St. Michael’s Hospital, 17th Floor, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
3
|
Rastelli C, Greco A, Finocchiaro C. Revealing the Role of Divergent Thinking and Fluid Intelligence in Children's Semantic Memory Organization. J Intell 2020; 8:E43. [PMID: 33327564 PMCID: PMC7768431 DOI: 10.3390/jintelligence8040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
The current theories suggest the fundamental role of semantic memory in creativity, mediating bottom-up (divergent thinking) and top-down (fluid intelligence) cognitive processes. However, the relationship between creativity, intelligence, and the organization of the semantic memory remains poorly-characterized in children. We investigated the ways in which individual differences in children's semantic memory structures are influenced by their divergent thinking and fluid intelligence abilities. The participants (mean age 10) were grouped by their levels (high/low) of divergent thinking and fluid intelligence. We applied a recently-developed Network Science approach in order to examine group-based semantic memory graphs. Networks were constructed from a semantic fluency task. The results revealed that divergent thinking abilities are related to a more flexible structure of the semantic network, while fluid intelligence corresponds to a more structured semantic network, in line with the previous findings from the adult sample. Our findings confirm the crucial role of semantic memory organization in creative performance, and demonstrate that this phenomenon can be traced back to childhood. Finally, we also corroborate the network science methodology as a valid approach to the study of creative cognition in the developmental population.
Collapse
|
4
|
|
5
|
Japardi K, Bookheimer S, Knudsen K, Ghahremani DG, Bilder RM. Functional magnetic resonance imaging of divergent and convergent thinking in Big-C creativity. Neuropsychologia 2018; 118:59-67. [DOI: 10.1016/j.neuropsychologia.2018.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/17/2017] [Accepted: 02/13/2018] [Indexed: 11/27/2022]
|
6
|
Weber R, Alicea B, Huskey R, Mathiak K. Network Dynamics of Attention During a Naturalistic Behavioral Paradigm. Front Hum Neurosci 2018; 12:182. [PMID: 29780313 PMCID: PMC5946671 DOI: 10.3389/fnhum.2018.00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigates the dynamics of attention during continuous, naturalistic interactions in a video game. Specifically, the effect of repeated distraction on a continuous primary task is related to a functional model of network connectivity. We introduce the Non-linear Attentional Saturation Hypothesis (NASH), which predicts that effective connectivity within attentional networks increases non-linearly with decreasing distraction over time, and exhibits dampening at critical parameter values. Functional magnetic resonance imaging (fMRI) data collected using a naturalistic behavioral paradigm coupled with an interactive video game is used to test the hypothesis. As predicted, connectivity in pre-defined regions corresponding to attentional networks increases as distraction decreases. Moreover, the functional relationship between connectivity and distraction is convex, that is, network connectivity somewhat increases as distraction decreases during the continuous primary task, however, connectivity increases considerably as distraction falls below critical levels. This result characterizes the non-linear pattern of connectivity within attentional networks, particularly with respect to their dynamics during behavior. These results are also summarized in the form of a network structure analysis, which underscores the role of various nodes in regulating the global network state. In conclusion, we situate the implications of this research in the context of cognitive complexity and an emerging theory of flow during media exposure.
Collapse
Affiliation(s)
- René Weber
- Media Neuroscience Lab, Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Bradly Alicea
- Orthogonal Research and Teaching Laboratory, Champaign, IL, United States
| | - Richard Huskey
- Cognitive Communication Science Lab, School of Communication, The Ohio State University, Columbus, OH, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Atasoy S, Roseman L, Kaelen M, Kringelbach ML, Deco G, Carhart-Harris RL. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci Rep 2017; 7:17661. [PMID: 29247209 PMCID: PMC5732294 DOI: 10.1038/s41598-017-17546-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.
Collapse
Affiliation(s)
- Selen Atasoy
- Center of Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Leor Roseman
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| | - Mendel Kaelen
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center of Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Robin L Carhart-Harris
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Varona P, Rabinovich MI. Hierarchical dynamics of informational patterns and decision-making. Proc Biol Sci 2017; 283:rspb.2016.0475. [PMID: 27252020 DOI: 10.1098/rspb.2016.0475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
Traditional studies on the interaction of cognitive functions in healthy and disordered brains have used the analyses of the connectivity of several specialized brain networks-the functional connectome. However, emerging evidence suggests that both brain networks and functional spontaneous brain-wide network communication are intrinsically dynamic. In the light of studies investigating the cooperation between different cognitive functions, we consider here the dynamics of hierarchical networks in cognitive space. We show, using an example of behavioural decision-making based on sequential episodic memory, how the description of metastable pattern dynamics underlying basic cognitive processes helps to understand and predict complex processes like sequential episodic memory recall and competition among decision strategies. The mathematical images of the discussed phenomena in the phase space of the corresponding cognitive model are hierarchical heteroclinic networks. One of the most important features of such networks is the robustness of their dynamics. Different kinds of instabilities of these dynamics can be related to 'dynamical signatures' of creativity and different psychiatric disorders. The suggested approach can also be useful for the understanding of the dynamical processes that are the basis of consciousness.
Collapse
Affiliation(s)
- Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mikhail I Rabinovich
- BioCircuits Institute, University of California, San Diego, 9500 Gilman Drive #0328, La Jolla, CA 92093-0328, USA
| |
Collapse
|
9
|
Plant N. Can a systems approach produce a better understanding of mood disorders? Biochim Biophys Acta Gen Subj 2016; 1861:3335-3344. [PMID: 27565355 DOI: 10.1016/j.bbagen.2016.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND One in twenty-five people suffer from a mood disorder. Current treatments are sub-optimal with poor patient response and uncertain modes-of-action. There is thus a need to better understand underlying mechanisms that determine mood, and how these go wrong in affective disorders. Systems biology approaches have yielded important biological discoveries for other complex diseases such as cancer, and their potential in affective disorders will be reviewed. SCOPE OF REVIEW This review will provide a general background to affective disorders, plus an outline of experimental and computational systems biology. The current application of these approaches in understanding affective disorders will be considered, and future recommendations made. MAJOR CONCLUSIONS Experimental systems biology has been applied to the study of affective disorders, especially at the genome and transcriptomic levels. However, data generation has been slowed by a lack of human tissue or suitable animal models. At present, computational systems biology has only be applied to understanding affective disorders on a few occasions. These studies provide sufficient novel biological insight to motivate further use of computational biology in this field. GENERAL SIGNIFICANCE In common with many complex diseases much time and money has been spent on the generation of large-scale experimental datasets. The next step is to use the emerging computational approaches, predominantly developed in the field of oncology, to leverage the most biological insight from these datasets. This will lead to the critical breakthroughs required for more effective diagnosis, stratification and treatment of affective disorders.
Collapse
Affiliation(s)
- Nick Plant
- School of Bioscience and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
10
|
Abraham A. Editorial: Madness and creativity-yes, no or maybe? Front Psychol 2015; 6:1055. [PMID: 26347665 PMCID: PMC4544303 DOI: 10.3389/fpsyg.2015.01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Abraham
- Department of Psychology, School of Social, Psychological and Communication Sciences, Leeds Beckett University Leeds, UK
| |
Collapse
|