McHaney JR, Tessmer R, Roark CL, Chandrasekaran B. Working memory relates to individual differences in speech category learning: Insights from computational modeling and pupillometry.
BRAIN AND LANGUAGE 2021;
222:105010. [PMID:
34454285 DOI:
10.1016/j.bandl.2021.105010]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
Across two experiments, we examine the relationship between individual differences in working memory (WM) and the acquisition of non-native speech categories in adulthood. While WM is associated with individual differences in a variety of learning tasks, successful acquisition of speech categories is argued to be contingent on WM-independent procedural-learning mechanisms. Thus, the role of WM in speech category learning is unclear. In Experiment 1, we show that individuals with higher WM acquire non-native speech categories faster and to a greater extent than those with lower WM. In Experiment 2, we replicate these results and show that individuals with higher WM use more optimal, procedural-based learning strategies and demonstrate more distinct speech-evoked pupillary responses for correct relative to incorrect trials. We propose that higher WM may allow for greater stimulus-related attention, resulting in more robust representations and optimal learning strategies. We discuss implications for neurobiological models of speech category learning.
Collapse