1
|
Guerra G, Tijms J, Tierney A, Vaessen A, Dick F, Bonte M. Auditory attention influences trajectories of symbol-speech sound learning in children with and without dyslexia. J Exp Child Psychol 2024; 237:105761. [PMID: 37666181 DOI: 10.1016/j.jecp.2023.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
The acquisition of letter-speech sound correspondences is a fundamental process underlying reading development, one that could be influenced by several linguistic and domain-general cognitive factors. In the current study, we mimicked the first steps of this process by examining behavioral trajectories of audiovisual associative learning in 110 7- to 12-year-old children with and without dyslexia. Children were asked to learn the associations between eight novel symbols and native speech sounds in a brief training and subsequently read words and pseudowords written in the artificial orthography. We then investigated the influence of auditory attention as one of the putative domain-general factors influencing associative learning. To this aim, we assessed children with experimental measures of auditory sustained selective attention and interference control. Our results showed shallower learning trajectories in children with dyslexia, especially during the later phases of the training blocks. Despite this, children with dyslexia performed similarly to typical readers on the post-training reading tests using the artificial orthography. Better auditory sustained selective attention and interference control skills predicted greater response accuracy during training. Sustained selective attention was also associated with the ability to apply these novel correspondences in the reading tests. Although this result has the limitations of a correlational design, it denotes that poor attentional skills may constitute a risk during the early stages of reading acquisition, when children start to learn letter-speech sound associations. Importantly, our findings underscore the importance of examining dynamics of learning in reading acquisition as well as individual differences in more domain-general attentional factors.
Collapse
Affiliation(s)
- Giada Guerra
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Jurgen Tijms
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands; Rudolf Berlin Center, Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Adam Tierney
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Anniek Vaessen
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Frederic Dick
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK
| | - Milene Bonte
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Pourhashemi F, Baart M, van Laarhoven T, Vroomen J. Want to quickly adapt to distorted speech and become a better listener? Read lips, not text. PLoS One 2022; 17:e0278986. [PMID: 36580461 PMCID: PMC9799298 DOI: 10.1371/journal.pone.0278986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022] Open
Abstract
When listening to distorted speech, does one become a better listener by looking at the face of the speaker or by reading subtitles that are presented along with the speech signal? We examined this question in two experiments in which we presented participants with spectrally distorted speech (4-channel noise-vocoded speech). During short training sessions, listeners received auditorily distorted words or pseudowords that were partially disambiguated by concurrently presented lipread information or text. After each training session, listeners were tested with new degraded auditory words. Learning effects (based on proportions of correctly identified words) were stronger if listeners had trained with words rather than with pseudowords (a lexical boost), and adding lipread information during training was more effective than adding text (a lipread boost). Moreover, the advantage of lipread speech over text training was also found when participants were tested more than a month later. The current results thus suggest that lipread speech may have surprisingly long-lasting effects on adaptation to distorted speech.
Collapse
Affiliation(s)
- Faezeh Pourhashemi
- Dept. of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Martijn Baart
- Dept. of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
- BCBL, Basque Center on Cognition, Brain, and Language, Donostia, Spain
- * E-mail:
| | - Thijs van Laarhoven
- Dept. of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Dept. of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
3
|
Romanovska L, Janssen R, Bonte M. Longitudinal changes in cortical responses to letter-speech sound stimuli in 8-11 year-old children. NPJ SCIENCE OF LEARNING 2022; 7:2. [PMID: 35079026 PMCID: PMC8789908 DOI: 10.1038/s41539-021-00118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/16/2021] [Indexed: 05/29/2023]
Abstract
While children are able to name letters fairly quickly, the automatisation of letter-speech sound mappings continues over the first years of reading development. In the current longitudinal fMRI study, we explored developmental changes in cortical responses to letters and speech sounds across 3 yearly measurements in a sample of 18 8-11 year old children. We employed a text-based recalibration paradigm in which combined exposure to text and ambiguous speech sounds shifts participants' later perception of the ambiguous sounds towards the text. Our results showed that activity of the left superior temporal and lateral inferior precentral gyri followed a non-linear developmental pattern across the measurement sessions. This pattern is reminiscent of previously reported inverted-u-shape developmental trajectories in children's visual cortical responses to text. Our findings suggest that the processing of letters and speech sounds involves non-linear changes in the brain's spoken language network possibly related to progressive automatisation of reading skills.
Collapse
Affiliation(s)
- Linda Romanovska
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Roef Janssen
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Romanovska L, Bonte M. How Learning to Read Changes the Listening Brain. Front Psychol 2021; 12:726882. [PMID: 34987442 PMCID: PMC8721231 DOI: 10.3389/fpsyg.2021.726882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child's brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children's reading skills unfold.
Collapse
Affiliation(s)
| | - Milene Bonte
- *Correspondence: Linda Romanovska, ; Milene Bonte,
| |
Collapse
|
5
|
Zhang M, Riecke L, Bonte M. Neurophysiological tracking of speech-structure learning in typical and dyslexic readers. Neuropsychologia 2021; 158:107889. [PMID: 33991561 DOI: 10.1016/j.neuropsychologia.2021.107889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Statistical learning, or the ability to extract statistical regularities from the sensory environment, plays a critical role in language acquisition and reading development. Here we employed electroencephalography (EEG) with frequency-tagging measures to track the temporal evolution of speech-structure learning in individuals with reading difficulties due to developmental dyslexia and in typical readers. We measured EEG while participants listened to (a) a structured stream of repeated tri-syllabic pseudowords, (b) a random stream of the same isochronous syllables, and (c) a series of tri-syllabic real Dutch words. Participants' behavioral learning outcome (pseudoword recognition) was measured after training. We found that syllable-rate tracking was comparable between the two groups and stable across both the random and structured streams of syllables. More importantly, we observed a gradual emergence of the tracking of tri-syllabic pseudoword structures in both groups. Compared to the typical readers, however, in the dyslexic readers this implicit speech structure learning seemed to build up at a slower pace. A brain-behavioral correlation analysis showed that slower learners (i.e., participants who were slower in establishing the neural tracking of pseudowords) were less skilled in phonological awareness. Moreover, those who showed stronger neural tracking of real words tended to be less fluent in the visual-verbal conversion of linguistic symbols. Taken together, our study provides an online neurophysiological approach to track the progression of implicit learning processes and gives insights into the learning difficulties associated with dyslexia from a dynamic perspective.
Collapse
Affiliation(s)
- Manli Zhang
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Lars Riecke
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
6
|
Destoky F, Bertels J, Niesen M, Wens V, Vander Ghinst M, Leybaert J, Lallier M, Ince RAA, Gross J, De Tiège X, Bourguignon M. Cortical tracking of speech in noise accounts for reading strategies in children. PLoS Biol 2020; 18:e3000840. [PMID: 32845876 PMCID: PMC7478533 DOI: 10.1371/journal.pbio.3000840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/08/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022] Open
Abstract
Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.
Collapse
Affiliation(s)
- Florian Destoky
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Bertels
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Consciousness, Cognition and Computation group, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Niesen
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Service d'ORL et de chirurgie cervico-faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacqueline Leybaert
- Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Robin A. A. Ince
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Institute for Biomagnetism and Biosignal analysis, University of Muenster, Muenster, Germany
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| |
Collapse
|
7
|
Burgering MA, van Laarhoven T, Baart M, Vroomen J. Fluidity in the perception of auditory speech: Cross-modal recalibration of voice gender and vowel identity by a talking face. Q J Exp Psychol (Hove) 2020; 73:957-967. [PMID: 31931664 DOI: 10.1177/1747021819900884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Humans quickly adapt to variations in the speech signal. Adaptation may surface as recalibration, a learning effect driven by error-minimisation between a visual face and an ambiguous auditory speech signal, or as selective adaptation, a contrastive aftereffect driven by the acoustic clarity of the sound. Here, we examined whether these aftereffects occur for vowel identity and voice gender. Participants were exposed to male, female, or androgynous tokens of speakers pronouncing /e/, /ø/, (embedded in words with a consonant-vowel-consonant structure), or an ambiguous vowel halfway between /e/ and /ø/ dubbed onto the video of a male or female speaker pronouncing /e/ or /ø/. For both voice gender and vowel identity, we found assimilative aftereffects after exposure to auditory ambiguous adapter sounds, and contrastive aftereffects after exposure to auditory clear adapter sounds. This demonstrates that similar principles for adaptation in these dimensions are at play.
Collapse
Affiliation(s)
- Merel A Burgering
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Thijs van Laarhoven
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Martijn Baart
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.,BCBL-Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
8
|
Romanovska L, Janssen R, Bonte M. Reading-Induced Shifts in Speech Perception in Dyslexic and Typically Reading Children. Front Psychol 2019; 10:221. [PMID: 30792685 PMCID: PMC6374624 DOI: 10.3389/fpsyg.2019.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
One of the proposed mechanisms underlying reading difficulties observed in developmental dyslexia is impaired mapping of visual to auditory speech representations. We investigate these mappings in 20 typically reading and 20 children with dyslexia aged 8–10 years using text-based recalibration. In this paradigm, the pairing of visual text and ambiguous speech sounds shifts (recalibrates) the participant’s perception of the ambiguous speech in subsequent auditory-only post-test trials. Recent research in adults demonstrated this text-induced perceptual shift in typical, but not in dyslexic readers. Our current results instead show significant text-induced recalibration in both typically reading children and children with dyslexia. The strength of this effect was significantly linked to the strength of perceptual adaptation effects in children with dyslexia but not typically reading children. Furthermore, additional analyses in a sample of typically reading children of various reading levels revealed a significant link between recalibration and phoneme categorization. Taken together, our study highlights the importance of considering dynamic developmental changes in reading, letter-speech sound coupling and speech perception when investigating group differences between typical and dyslexic readers.
Collapse
Affiliation(s)
- Linda Romanovska
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Roef Janssen
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Reading-induced shifts of perceptual speech representations in auditory cortex. Sci Rep 2017; 7:5143. [PMID: 28698606 PMCID: PMC5506038 DOI: 10.1038/s41598-017-05356-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/30/2017] [Indexed: 11/08/2022] Open
Abstract
Learning to read requires the formation of efficient neural associations between written and spoken language. Whether these associations influence the auditory cortical representation of speech remains unknown. Here we address this question by combining multivariate functional MRI analysis and a newly-developed ‘text-based recalibration’ paradigm. In this paradigm, the pairing of visual text and ambiguous speech sounds shifts (i.e. recalibrates) the perceptual interpretation of the ambiguous sounds in subsequent auditory-only trials. We show that it is possible to retrieve the text-induced perceptual interpretation from fMRI activity patterns in the posterior superior temporal cortex. Furthermore, this auditory cortical region showed significant functional connectivity with the inferior parietal lobe (IPL) during the pairing of text with ambiguous speech. Our findings indicate that reading-related audiovisual mappings can adjust the auditory cortical representation of speech in typically reading adults. Additionally, they suggest the involvement of the IPL in audiovisual and/or higher-order perceptual processes leading to this adjustment. When applied in typical and dyslexic readers of different ages, our text-based recalibration paradigm may reveal relevant aspects of perceptual learning and plasticity during successful and failing reading development.
Collapse
|