1
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
2
|
Tang N, Shu W, Wang HN. Accelerated transcranial magnetic stimulation for major depressive disorder: A quick path to relief? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1666. [PMID: 37779251 DOI: 10.1002/wcs.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a safe, tolerable, and evidence-based intervention for major depressive disorder (MDD). However, even after decades of research, nearly half of the patients with MDD fail to respond to conventional TMS, with responding slowly and requiring daily attendance at the treatment site for 4-6 weeks. To intensify antidepressant efficacy and shorten treatment duration, accelerated TMS protocols, which involve multiple sessions per day over a few days, have been proposed and evaluated for safety and viability. We reviewed and summarized the current knowledge in accelerated TMS, including stimulation parameters, antidepressant efficacy, anti-suicidal efficacy, safety, and adverse effects. Limitations and suggestions for future directions are also addressed, along with a brief discussion on the application of accelerated TMS during the COVID-19 pandemic. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Nailong Tang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, the 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Wanqing Shu
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Brabenec L, Simko P, Sejnoha Minsterova A, Kostalova M, Rektorova I. Repetitive transcranial magnetic stimulation for hypokinetic dysarthria in Parkinson's disease enhances white matter integrity of the auditory-motor loop. Eur J Neurol 2023; 30:881-886. [PMID: 36529528 DOI: 10.1111/ene.15665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE In our previous study, repeated sessions of repetitive transcranial magnetic stimulation (rTMS) over the auditory feedback area were shown to improve hypokinetic dysarthria (HD) in Parkinson's disease (PD) and led to changes in functional connectivity within the left-sided articulatory networks. We analyzed data from this previous study and assessed the effects of rTMS for HD in PD on the diffusion parameters of the left anterior arcuate fasciculus (AAF), which connects the auditory feedback area with motor regions involved in articulation. METHODS Patients were assigned to 10 sessions of real or sham 1-Hz stimulation over the right posterior superior temporal gyrus. Stimulation effects were evaluated using magnetic resonance diffusion tensor imaging and by a speech therapist using a validated tool (Phonetics score of the Dysarthric Profile) at baseline, immediately after 2 weeks of stimulation, and at follow-up visits at Weeks 6 and 10 after the baseline. RESULTS Altogether, data from 33 patients were analyzed. A linear mixed model revealed significant time-by-group interaction (p = 0.006) for the relative changes of fractional anisotropy of the AAF; the value increases were associated with the temporal evolution of the Phonetics score (R = 0.367, p = 0.028) in the real stimulation group. CONCLUSIONS Real rTMS treatment for HD in PD as compared to sham stimulation led to increases of white matter integrity of the auditory-motor loop during the 2-month follow-up period. The changes were related to motor speech improvements.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alzbeta Sejnoha Minsterova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
5
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
6
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
7
|
Gupta AK, Kumar A, Chandrashekhar N. Adjuvant treatment with repetitive transcranial magnetic stimulation in freshly diagnosed alcohol-dependence syndrome patients from an industry: An outcome study. Ind Psychiatry J 2021; 30:S93-S96. [PMID: 34908672 PMCID: PMC8611572 DOI: 10.4103/0972-6748.328795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies have suggested that repetitive transcranial magnetic stimulation (rTMS) could be efficacious in the treatment of major depression and other psychiatric indications. Alcohol-dependence syndrome is difficult to treat, and the relapse rate is high, even following the standard treatment protocol. No study has been done so far in India for the use of rTMS as an adjuvant therapy in the relapse prevention of patients with alcohol-dependence syndrome. Hence, the current study is an open-label study to explore the same. AIM The aim of this study was to study the feasibility of rTMS in alcohol-dependence syndrome patients, the side effects if any, and the number of relapses that they may suffer from vis-a-vis patients with standard treatment protocols. MATERIALS AND METHODS In a prospective, open-label study design, 100 freshly diagnosed cases of alcohol-dependence syndrome were included, and after suitable randomization, half of them were given adjuvant rTMS along with standard treatment and the rest received only standard treatment. The rates of relapse into drinking were compared for both groups. The data were compiled and analyzed with appropriate statistical methods. RESULTS Participants given adjuvant rTMS showed significantly less number of relapses into drinking compared to the control group on standard treatment for alcohol-dependence syndrome. CONCLUSION In the present study, though the sample size is small, a significant change with this novel treatment has been found. Whether this change is maintained over a period of time is to be seen by other longitudinal studies.
Collapse
Affiliation(s)
- Anindya Kumar Gupta
- Department of Psychiatry, Command Hospital Air Force, Base Hospital, Delhi, India
| | - Amit Kumar
- Department of Psychiatry, Command Hospital (AF), Bengaluru, Karnataka, India
| | | |
Collapse
|
8
|
Brabenec L, Klobusiakova P, Simko P, Kostalova M, Mekyska J, Rektorova I. Non-invasive brain stimulation for speech in Parkinson's disease: A randomized controlled trial. Brain Stimul 2021; 14:571-578. [PMID: 33781956 DOI: 10.1016/j.brs.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Hypokinetic dysarthria is a common but difficult-to-treat symptom of Parkinson's disease (PD). OBJECTIVES We evaluated the long-term effects of multiple-session repetitive transcranial magnetic stimulation on hypokinetic dysarthria in PD. Neural mechanisms of stimulation were assessed by functional MRI. METHODS A randomized parallel-group sham stimulation-controlled design was used. Patients were randomly assigned to ten sessions (2 weeks) of real (1 Hz) or sham stimulation over the right superior temporal gyrus. Stimulation effects were evaluated at weeks 2, 6, and 10 after the baseline assessment. Articulation, prosody, and speech intelligibility were quantified by speech therapist using a validated tool (Phonetics score of the Dysarthric Profile). Activations of the speech network regions and intrinsic connectivity were assessed using 3T MRI. Linear mixed models and post-hoc tests were utilized for data analyses. RESULTS Altogether 33 PD patients completed the study (20 in the real stimulation group and 13 in the sham stimulation group). Linear mixed models revealed significant effects of time (F(3, 88.1) = 22.7, p < 0.001) and time-by-group interactions: F(3, 88.0) = 2.8, p = 0.040) for the Phonetics score. Real as compared to sham stimulation led to activation increases in the orofacial sensorimotor cortex and caudate nucleus and to increased intrinsic connectivity of these regions with the stimulated area. CONCLUSIONS This is the first study to show the long-term treatment effects of non-invasive brain stimulation for hypokinetic dysarthria in PD. Neural mechanisms of the changes are discussed.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Surgeon General Office of the Slovak Armed Forces, Ružomberok, Slovak Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, Faculty Hospital and Masaryk University, Brno, Czech Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
9
|
Edwards G, Contò F, Bucci LK, Battelli L. Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention. Cereb Cortex Commun 2020; 1:tgaa069. [PMID: 34296130 PMCID: PMC8152938 DOI: 10.1093/texcom/tgaa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 11/13/2022] Open
Abstract
Sustained attention is a limited resource which declines during daily tasks. Such decay is exacerbated in clinical and aging populations. Inhibition of the intraparietal sulcus (IPS), using low-frequency repetitive transcranial magnetic stimulation (LF-rTMS), can lead to an upregulation of functional communication within the attention network. Attributed to functional compensation for the inhibited node, this boost lasts for tens of minutes poststimulation. Despite the neural change, no behavioral correlate has been found in healthy subjects, a necessary direct evidence of functional compensation. To understand the functional significance of neuromodulatory induced fluctuations on attention, we sought to boost the impact of LF-rTMS to impact behavior. We controlled brain state prior to LF-rTMS using high-frequency transcranial random noise stimulation (HF-tRNS), shown to increase and stabilize neuronal excitability. Using fMRI-guided stimulation protocols combining HF-tRNS and LF-rTMS, we tested the poststimulation impact on sustained attention with multiple object tracking (MOT). While attention deteriorated across time in control conditions, HF-tRNS followed by LF-rTMS doubled sustained attention capacity to 94 min. Multimethod stimulation was more effective when targeting right IPS, supporting specialized attention processing in the right hemisphere. Used in cognitive domains dependent on network-wide neural activity, this tool may cause lasting neural compensation useful for clinical rehabilitation.
Collapse
Affiliation(s)
- Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind/Brain Sciences – CIMeC, University of Trento, 38122 Trento, Italy
| | - Loryn K Bucci
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|