1
|
Hamaoui J, Ocklenburg S, Segond H. Perinatal adversities as a common factor underlying the association between atypical laterality and neurodevelopmental disorders: A developmental perspective. Psychophysiology 2024; 61:e14676. [PMID: 39198978 PMCID: PMC11579235 DOI: 10.1111/psyp.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Several neurodevelopmental disorders are associated with a higher prevalence of atypical laterality (e.g., left-handedness). Both genetic and non-genetic factors play a role in this association, yet the underlying neurobiological mechanisms are largely unclear. Recent studies have found that stress, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, could be linked to laterality development. These findings provide an opportunity to explore new theoretical perspectives on the association between atypical laterality and neurodevelopmental disorders. This article aims to provide a theoretical framework demonstrating how perinatal adversities could disrupt the typical developmental trajectories of both laterality and neurodevelopment, potentially impacting both the HPA axis and the vestibular system. Additionally, we argue that the relationship between atypical laterality and neurodevelopmental disorders cannot be understood by simply linking genetic and non-genetic factors to a diagnosis, but the developmental trajectories must be considered. Based on these ideas, several perspectives for future research are proposed.
Collapse
Affiliation(s)
- Jad Hamaoui
- Azrieli Research Center of Sainte‐Justine University HospitalMontrealQuebecCanada
- School of PsychoeducationUniversity of MontrealMontrealQuebecCanada
| | - Sebastian Ocklenburg
- Department of PsychologyMSH Medical School HamburgHamburgGermany
- ICAN Institute for Cognitive and Affective NeuroscienceMSH Medical School HamburgHamburgGermany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions, Department and faculty of PsychologyUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
2
|
Amelink JS, Postema MC, Kong XZ, Schijven D, Carrión-Castillo A, Soheili-Nezhad S, Sha Z, Molz B, Joliot M, Fisher SE, Francks C. Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Commun Biol 2024; 7:1209. [PMID: 39342056 PMCID: PMC11438961 DOI: 10.1038/s42003-024-06890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying its genetic architecture. We used resting-state imaging data from 29,681 participants (UK Biobank) to measure connectivity between 18 left-hemisphere regions involved in multimodal sentence-level processing, as well as their right-hemisphere homotopes, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on genetic variants with population frequencies >1%, identified 14 genomic loci, of which three were also associated with asymmetry of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity. Exome-wide association analysis based on rare, protein-altering variants (frequencies <1%) suggested 7 additional genes. These findings shed new light on genetic contributions to language network organization and related behavioural traits.
Collapse
Affiliation(s)
- Jitse S Amelink
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Merel C Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Amaia Carrión-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Commissariat à L'énergie Atomique et aux Énergies Alternatives, CNRS, Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Lesur I, Rogier O, Sow MD, Boury C, Duplan A, Garnier A, Senhaji-Rachik A, Civan P, Daron J, Delaunay A, Duvaux L, Benoit V, Guichoux E, Le Provost G, Sanou E, Ambroise C, Plomion C, Salse J, Segura V, Tost J, Maury S. A strategy for studying epigenetic diversity in natural populations: proof of concept in poplar and oak. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5568-5584. [PMID: 38889253 DOI: 10.1093/jxb/erae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
In the last 20 years, several techniques have been developed for quantifying DNA methylation, the most studied epigenetic marks in eukaryotes, including the gold standard method, whole-genome bisulfite sequencing (WGBS). WGBS quantifies genome-wide DNA methylation but has several inconveniences rendering it less suitable for population-scale epigenetic studies. The high cost of deep sequencing and the large amounts of data generated prompted us to seek an alternative approach. Restricting studies to parts of the genome would be a satisfactory alternative had there not been a major limitation: the need to select upstream targets corresponding to differentially methylated regions as targets. Given the need to study large numbers of samples, we propose a strategy for investigating DNA methylation variation in natural populations, taking into account the structural complexity of genomes, their size, and their content in unique coding regions versus repeated regions as transposable elements. We first identified regions of highly variable DNA methylation in a subset of genotypes representative of the biological diversity in the population by WGBS. We then analysed the variations of DNA methylation in these targeted regions at the population level by sequencing capture bisulfite (SeqCapBis). The entire strategy was then validated by applying it to another species. Our strategy was developed as a proof of concept on natural populations of two forest species: Populus nigra and Quercus petraea.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, F-33610 Cestas, France
- HelixVenture, F-33700 Mérignac, France
| | | | - Mamadou Dia Sow
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | - Alexandre Duplan
- INRAE, ONF, BioForA, F-45075 Orléans, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | | | - Peter Civan
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Josquin Daron
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, F-75724 Paris, France
| | - Alain Delaunay
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | | | | | | | - Edmond Sanou
- LaMME, 23 Bd. de France, F-91037 Évry Cedex, France
| | | | | | - Jérôme Salse
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Vincent Segura
- INRAE, ONF, BioForA, F-45075 Orléans, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, F-34398 Montpellier, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | - Stéphane Maury
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| |
Collapse
|
4
|
Ortug A, Guo Y, Feldman HA, Ou Y, Warren JLA, Dieuveuil H, Baumer NT, Faja SK, Takahashi E. Autism-associated brain differences can be observed in utero using MRI. Cereb Cortex 2024; 34:bhae117. [PMID: 38602735 PMCID: PMC11008691 DOI: 10.1093/cercor/bhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024] Open
Abstract
Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.
Collapse
Affiliation(s)
- Alpen Ortug
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Yurui Guo
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yangming Ou
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Jose Luis Alatorre Warren
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Harrison Dieuveuil
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Nicole T Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Susan K Faja
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Developmental Medicine, Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Harvard Medical School, Brookline, MA 02115, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
5
|
Steger C, Moatti C, Payette K, De Silvestro A, Nguyen TD, Coraj S, Yakoub N, Natalucci G, Kottke R, Tuura R, Knirsch W, Jakab A. Characterization of dynamic patterns of human fetal to neonatal brain asymmetry with deformation-based morphometry. Front Neurosci 2023; 17:1252850. [PMID: 38130698 PMCID: PMC10734644 DOI: 10.3389/fnins.2023.1252850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Despite established knowledge on the morphological and functional asymmetries in the human brain, the understanding of how brain asymmetry patterns change during late fetal to neonatal life remains incomplete. The goal of this study was to characterize the dynamic patterns of inter-hemispheric brain asymmetry over this critically important developmental stage using longitudinally acquired MRI scans. Methods Super-resolution reconstructed T2-weighted MRI of 20 neurotypically developing participants were used, and for each participant fetal and neonatal MRI was acquired. To quantify brain morphological changes, deformation-based morphometry (DBM) on the longitudinal MRI scans was utilized. Two registration frameworks were evaluated and used in our study: (A) fetal to neonatal image registration and (B) registration through a mid-time template. Developmental changes of cerebral asymmetry were characterized as (A) the inter-hemispheric differences of the Jacobian determinant (JD) of fetal to neonatal morphometry change and the (B) time-dependent change of the JD capturing left-right differences at fetal or neonatal time points. Left-right and fetal-neonatal differences were statistically tested using multivariate linear models, corrected for participants' age and sex and using threshold-free cluster enhancement. Results Fetal to neonatal morphometry changes demonstrated asymmetry in the temporal pole, and left-right asymmetry differences between fetal and neonatal timepoints revealed temporal changes in the temporal pole, likely to go from right dominant in fetal to a bilateral morphology in neonatal timepoint. Furthermore, the analysis revealed right-dominant subcortical gray matter in neonates and three clusters of increased JD values in the left hemisphere from fetal to neonatal timepoints. Discussion While these findings provide evidence that morphological asymmetry gradually emerges during development, discrepancies between registration frameworks require careful considerations when using DBM for longitudinal data of early brain development.
Collapse
Affiliation(s)
- Céline Steger
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Charles Moatti
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Kelly Payette
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra De Silvestro
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dao Nguyen
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Seline Coraj
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ninib Yakoub
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
6
|
Hopkins WD, Coulon O, Meguerditchian A, Staes N, Sherwood CC, Schapiro SJ, Mangin JF, Bradley B. Genetic determinants of individual variation in the superior temporal sulcus of chimpanzees (Pan troglodytes). Cereb Cortex 2023; 33:1925-1940. [PMID: 35697647 PMCID: PMC9977371 DOI: 10.1093/cercor/bhac183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/22/2022] Open
Abstract
The superior temporal sulcus (STS) is a conserved fold that divides the middle and superior temporal gyri. In humans, there is considerable variation in the shape, folding pattern, lateralization, and depth of the STS that have been reported to be associated with social cognition and linguistic functions. We examined the role that genetic factors play on individual variation in STS morphology in chimpanzees. The surface area and depth of the STS were quantified in sample of 292 captive chimpanzees comprised of two genetically isolated population of individuals. The chimpanzees had been previously genotyped for AVPR1A and KIAA0319, two genes that play a role in social cognition and communication in humans. Single nucleotide polymorphisms in the KIAA0319 and AVPR1A genes were associated with average depth as well as asymmetries in the STS. By contrast, we found no significant effects of these KIA0319 and AVPR1A polymorphism on surface area and depth measures for the central sulcus. The overall findings indicate that genetic factors account for a small to moderate amount of variation in STS morphology in chimpanzees. These findings are discussed in the context of the role of the STS in social cognition and language in humans and their potential evolutionary origins.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- IMéRA – Institut d’Etudes Avancées, Aix-Marseille Universite, Marseille 13004, France
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
| | - Oliver Coulon
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Aix-Marseille Univ, CNRS, Institut de Neurosciences de La Timone, UMR7289, Marseille 13284, France
| | - Adrien Meguerditchian
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Laboratoire de Psychologie Cognitive, UMR 7290, LPC, Aix-Marseille Univ, CNRS, Marseille 13284, France
| | - Nicky Staes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen 2200N, Denmark
| | | | - Brenda Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
7
|
Recruitment of interictal- and ictal-like discharges in posterior piriform cortex by delta-rate (1–4 Hz) focal bursts in anterior piriform cortex in vivo. Epilepsy Res 2022; 187:107032. [DOI: 10.1016/j.eplepsyres.2022.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
|
8
|
Kállai J, Páll T, Herold R, Tényi T, Zsidó AN. Ambiguous handedness and visuospatial pseudoneglect in schizotypy in physical and computer-generated virtual environments. Sci Rep 2022; 12:12169. [PMID: 35842454 PMCID: PMC9288449 DOI: 10.1038/s41598-022-16454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Virtual reality (VR) technology has increased clinical attention in the health care of schizophrenia spectrum disorders in both diagnoses of the symptoms and assessment of schizotypal traits. However, the exact nature of VR-induced positive treatment effect in schizotypy is still unknown. In this study, VR technology was used as a non-invasive neurocognitive trigger to test the asymmetric visuospatial representational instability found in individuals with high schizotypy. The study aimed to reveal the brain functional hemispheric laterality in physical and virtual realities in individuals with schizotypal traits. Fifty-one healthy, right-handed participants (24 males and 27 females) were enrolled through public advertisements. Hemispheric functional asymmetry was measured by the Line Bisection Task (LBT). The results revealed that (a) LBT bias in the physical reality showed a handedness-related leftward pseudoneglect, however, similar handedness-related pseudoneglect in VR has not been found. (b) Comparing LBT bias in physically real and VR environments showed rightward drift in VR environments independently to the degree of handedness. (c) The schizotypy has no association with handedness, however, the cognitive schizotypy is related to the LBT bias. Higher cognitive schizotypy in VR associated with left hemispatial pseudoneglect. In conclusion, schizotypy is associated with ambiguous behavioral and cognitive functional laterality. In individuals with high cognitive schizotypy, the VR environment enhanced the representational articulation of the left hemispace. This effect may be originated from the enhancement of the right hemisphere overactivation and is followed by a lower mental control of the overt behavior.
Collapse
Affiliation(s)
- János Kállai
- Institute of Behavioral Sciences, Medical Faculty University of Pécs, Pécs, Hungary.
- Institute of Behavioral Sciences, Medical School, University of Pécs, 7624 Szigeti Street 12, Pécs, Hungary.
| | - Tamás Páll
- Artistic Research at the University of Applied Arts Vienna, Vienna, Austria
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - András Norbert Zsidó
- Institute of Psychology, Arts and Sciences Faculty, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
10
|
Takasawa E, Abe M, Chikuda H, Hanakawa T. A computational model based on corticospinal functional MRI revealed asymmetrically organized motor corticospinal networks in humans. Commun Biol 2022; 5:664. [PMID: 35790815 PMCID: PMC9256686 DOI: 10.1038/s42003-022-03615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Evolution of the direct, monosynaptic connection from the primary motor cortex to the spinal cord parallels acquisition of hand dexterity and lateralization of hand preference. In non-human mammals, the indirect, multi-synaptic connections between the bilateral primary motor cortices and the spinal cord also participates in controlling dexterous hand movement. However, it remains unknown how the direct and indirect corticospinal pathways work in concert to control unilateral hand movement with lateralized preference in humans. Here we demonstrated the asymmetric functional organization of the two corticospinal networks, by combining network modelling and simultaneous functional magnetic resonance imaging techniques of the brain and the spinal cord. Moreover, we also found that the degree of the involvement of the two corticospinal networks paralleled lateralization of hand preference. The present results pointed to the functionally lateralized motor nervous system that underlies the behavioral asymmetry of handedness in humans. MRI and network modelling reveal correlation between the degree of involvement of the two corticospinal networks and the lateralization of handedness in humans.
Collapse
Affiliation(s)
- Eiji Takasawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mitsunari Abe
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of Integrated Neuroanatomy & Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
11
|
Odintsova VV, Suderman M, Hagenbeek FA, Caramaschi D, Hottenga JJ, Pool R, Dolan CV, Ligthart L, van Beijsterveldt CEM, Willemsen G, de Geus EJC, Beck JJ, Ehli EA, Cuellar-Partida G, Evans DM, Medland SE, Relton CL, Boomsma DI, van Dongen J. DNA methylation in peripheral tissues and left-handedness. Sci Rep 2022; 12:5606. [PMID: 35379837 PMCID: PMC8980054 DOI: 10.1038/s41598-022-08998-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Catharina E M van Beijsterveldt
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, USA
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
13
|
Developmental Dyslexia: Environment Matters. Brain Sci 2021; 11:brainsci11060782. [PMID: 34199166 PMCID: PMC8231524 DOI: 10.3390/brainsci11060782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental dyslexia (DD) is a multifactorial, specific learning disorder. Susceptibility genes have been identified, but there is growing evidence that environmental factors, and especially stress, may act as triggering factors that determine an individual's risk of developing DD. In DD, as in most complex phenotypes, the presence of a genetic mutation fails to explain the broad phenotypic spectrum observed. Early life stress has been repeatedly associated with the risk of multifactorial disorders, due to its effects on chromatin regulation, gene expression, HPA axis function and its long-term effects on the systemic stress response. Based on recent evidence, we discuss the potential role of stress on DD occurrence, its putative epigenetic effects on the HPA axis of affected individuals, as well as the necessity of early and appropriate intervention, based on the individual stress-associated (endo)phenotype.
Collapse
|
14
|
Viruega H, Gaviria M. Functional Weight of Somatic and Cognitive Networks and Asymmetry of Compensatory Mechanisms: Collaboration or Divergency among Hemispheres after Cerebrovascular Accident? Life (Basel) 2021; 11:life11060495. [PMID: 34071611 PMCID: PMC8226640 DOI: 10.3390/life11060495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain holds highly sophisticated compensatory mechanisms relying on neuroplasticity. Neuronal degeneracy, redundancy, and brain network organization make the human nervous system more robust and evolvable to continuously guarantee an optimal environmental-related homeostasis. Nevertheless, after injury, restitution processes appear dissimilar, depending on the pathology. Following a cerebrovascular accident, asymmetry, within- and across-network compensation and interhemispheric inhibition are key features to functional recovery. In moderate-to-severe stroke, neurological outcome is often poor, and little is known about the paths that enable either an efficient collaboration among hemispheres or, on the contrary, an antagonism of adaptative responses. In this review, we aim to decipher key issues of ipsilesional and contralesional hemispheric functioning allowing the foundations of effective neurorehabilitation strategies.
Collapse
Affiliation(s)
- Hélène Viruega
- Institut Equiphoria, Combo Besso-Rouges Parets, 48500 La Canourgue, France;
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
| | - Manuel Gaviria
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
- Correspondence:
| |
Collapse
|
15
|
Manns M, Basbasse YE, Freund N, Ocklenburg S. Paw preferences in mice and rats: Meta-analysis. Neurosci Biobehav Rev 2021; 127:593-606. [PMID: 34004244 DOI: 10.1016/j.neubiorev.2021.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Mice and rats are among the most common animal model species in both basic and clinical neuroscience. Despite their ubiquity as model species, many clinically relevant brain-behaviour relationships in rodents are not well understood. In particular, data on hemispheric asymmetries, an important organizational principle in the vertebrate brain, are conflicting as existing studies are often statistically underpowered due to small sample sizes. Paw preference is one of the most frequently investigated forms of hemispheric asymmetries on the behavioural level. Here, we used meta-analysis to statistically integrate findings on paw preferences in rats and mice. For both species, results indicate significant hemispheric asymmetries on the individual level. In mice, 81 % of animals showed a preference for either the left or the right paw, while 84 % of rats showed this preference. However, contrary to what has been reported in humans, population level asymmetries were not observed. These results are particularly significant as they point out that paying attention to potential individual hemispheric differences is important in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| | - Yasmin El Basbasse
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
16
|
Korneeva EV, Tiunova AA, Alexandrov LI, Golubeva TB. Influence of Natural Asymmetric Embryonic Visual Afferentation on the Neuronal Activations in the Caudomedial Mesopallium during the Freezing Response in Altricial Nestlings. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 497:62-64. [PMID: 33948819 DOI: 10.1134/s0012496621020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The study was designed to investigate the role of asymmetric prenatal visual stimulation on the activation of caudomedial mesopallium (CMM) neurons in nine-day-old pied flycatcher nestlings during auditory-guided freezing. Four groups of nestlings were studied: groups 1 and 2 included nestlings with normal vision and visually deprived, respectively, that were incubated and hatched in normal light environment; groups 3 and 4, nestlings with normal vision and visually deprived, respectively, that were incubated and hatched in the dark. The eyes of visually deprived nestlings were covered with non-transparent cups 2 h before the experiment. C-Fos expression was studied. It was shown that densities of neurons activated during freezing response differed in right vs. left CMM only in the group of visually deprived nestlings incubated under light. This suggests that the presence or absence of the asymmetric embryonic visual afferentation may result in the development of different strategies of the visual system integration into defense behavior.
Collapse
Affiliation(s)
- E V Korneeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia.
| | - A A Tiunova
- Anokhin Institute of Normal Physiology, 125315, Moscow, Russia
| | - L I Alexandrov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | | |
Collapse
|
17
|
There are More than Two Sides to Antisocial Behavior: The Inextricable Link between Hemispheric Specialization and Environment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human functions and traits are linked to cerebral networks serving different emotional and cognitive control systems, some of which rely on hemispheric specialization and integration to promote adaptive goal-directed behavior. Among the neural systems discussed in this context are those underlying pro- and antisocial behaviors. The diverse functions and traits governing our social behavior have been associated with lateralized neural activity. However, as with other complex behaviors, specific hemispheric roles are difficult to elucidate. This is due largely to environmental and contextual influences, which interact with neural substrates in the development and expression of pro and antisocial functions. This paper will discuss the reciprocal ties between environmental factors and hemispheric functioning in the context of social behavior. Rather than an exhaustive review, the paper will attempt to familiarize readers with the prominent literature and primary questions to encourage further research and in-depth discussion in this field.
Collapse
|
18
|
Asymmetry of turning behavior in rats is modulated by early life stress. Behav Brain Res 2020; 393:112807. [DOI: 10.1016/j.bbr.2020.112807] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
|
19
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
20
|
Joyce BJ, Brown GE. Short-term captivity drives hypothalamic plasticity and asymmetry in wild-caught northern red bellied dace (Chrosomus eos). JOURNAL OF FISH BIOLOGY 2020; 97:577-582. [PMID: 32447778 DOI: 10.1111/jfb.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Teleost fish are neuroplastic and are known to alter their brain morphology and behaviour in response to environmental change such as an increase in predation pressure. The hypothalamus plays a key role in regulating behavioural responses to predation risk. In this study, wild-caught northern red bellied dace (Chrosomus eos) developed smaller and less symmetric hypothalami when held in captivity for 14 days; both measures correlated with boldness in a latency to emerge test. This study's results highlight the potential impact of short-term holding conditions on brains and behaviour.
Collapse
Affiliation(s)
- Brendan J Joyce
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | | |
Collapse
|
21
|
Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress? Cortex 2020; 125:215-232. [PMID: 32035318 DOI: 10.1016/j.cortex.2019.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hemispheric asymmetries are a major organizational principle of the human brain. In different neurodevelopmental and psychiatric disorders, like schizophrenia, autism spectrum disorders, depression, dyslexia and posttraumatic stress disorder, functional and/or structural hemispheric asymmetries are altered compared to healthy controls. The question, why these disorders all share the common characteristic of altered hemispheric asymmetries despite vastly different etiologies and symptoms remains one of the unsolved mysteries of laterality research. This review is aimed at reviewing potential reasons for why atypical lateralization is so common in many neurodevelopmental and psychiatric disorders. To this end, we review the evidence for overlaps in the genetic and non-genetic factors involved in the ontogenesis of different disorders and hemispheric asymmetries. While there is evidence for genetic overlap between different disorders, only few asymmetry-related loci have also been linked to disorders and importantly, those effects are mostly specific to single disorders. However, there is evidence for shared non-genetic influences between disorders and hemispheric asymmetries. Most neurodevelopmental and psychiatric disorders show alterations in the hypothalamic-pituitary adrenocortical (HPA) axis and maternal as well as early life stress have been implicated in their etiology. Stress has also been suggested to affect hemispheric asymmetries. We propose a model in which early life stress as well as chronic stress not only increases the risk for psychiatric and neurodevelopmental disorders but also changes structural and functional hemispheric asymmetries leading to the aberrant lateralization patterns seen in these disorders. Thus, pathology-related changes in hemispheric asymmetries are not a factor causing disorders, but rather a different phenotype that is affected by partly overlapping ontogenetic factors, primarily stress.
Collapse
|