1
|
Agharazi H, Wang A, Guha A, Gupta P, Shaikh AG. Unraveling the Twist: Spatial Navigational Challenges in Cervical Dystonia. Mov Disord 2023; 38:2116-2121. [PMID: 37914913 DOI: 10.1002/mds.29612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cervical dystonia (CD) is an intricate neurological condition with motor and nonmotor symptoms. These include disruptions in visual perception, self-orientation, visual working memory, and vestibular functions. However, the specific impact of CD on perceiving self-motion direction, especially with isolated visual or vestibular stimuli, remains largely unexplored. OBJECTIVE This study aimed to examine the effects of CD on linear motion perception, hypothesizing impaired heading discrimination in both vestibular and visual tasks, and that such deficits correlate with the disease severity. METHODS We employed a cutting-edge motion platform to precisely control whole-body linear motion. Through repeated two-alternative forced-choice tasks, we assessed vestibular heading direction discrimination. Participants observed dynamic star clouds in immersive virtual reality and indicated their perceived self-motion direction, evaluating visual heading direction discrimination. Sensitivity to direction variations and response accuracy errors were analyzed using robust Gaussian cumulative distribution psychometric functions. RESULTS Heading perception is impaired in individuals with CD, particularly evident in vestibular heading discrimination. CD severity correlated with elevated thresholds for both vestibular and visual heading discrimination. Surprisingly, lateralized CD did not introduce bias in either system, suggesting widespread disruption over localized effects. CONCLUSIONS Contrary to previous beliefs, our findings challenge the idea that CD-related heading discrimination issues mainly arise from peripheral vestibular effects. Instead, abnormal proprioceptive input from dystonic neck muscles introduces noise into the central mechanism integrating visual, vestibular, and proprioceptive signals. These insights into spatial navigation deficits have implications for future CD research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Hanieh Agharazi
- National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Alexander Wang
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, Ohio, USA
| | - Aratrik Guha
- National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Palak Gupta
- National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aasef G Shaikh
- National VA Parkinson Consortium Center, Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Söke F, Ataoğlu NEE, Öztekin MF, Koçer B, Karakoç S, Gülşen Ç, Çomoğlu SS, Bora HA. Impaired trunk control and its relationship with balance, functional mobility, and disease severity in patients with cervical dystonia. Turk J Med Sci 2023; 53:405-412. [PMID: 36945943 PMCID: PMC10388090 DOI: 10.55730/1300-0144.5597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/30/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Impaired trunk control is common in neurological disorders; however, trunk control has not been examined in patients with cervical dystonia (CD). Therefore, the primary aim was to compare trunk control between patients with CD and healthy people. The secondary aim was to investigate the relationship between trunk control and balance, functional mobility, and disease severity in patients with CD. METHODS ]This cross-sectional study included 32 patients with CD and 32 healthy people. Trunk control was compared using the trunk impairment scale (TIS) that consists of three subscales: static sitting balance, dynamic sitting balance, and trunk coordination between two groups. Balance was assessed using Berg Balance Scale, four square step test, and one-leg stance test. The Timed Up and Go Test was measured to determine functional mobility. Toronto Western Spasmodic Torticollis Rating Scale was used to evaluate disease severity.]></AbstractText> <AbstractText Label="RESULTS"><![CDATA[ Patients with CD demonstrated worse performance on the TIS-total with TIS-dynamic sitting subscale and TIS-trunk coordination subscale (p < 0.001, p < 0.001, and p < 0.001), except for TIS-static sitting subscale (p = 0.078) compared to healthy people. TIS-total scores had moderate to strong correlations with balance, functional mobility, and disease severity (range r between 0.786 and 0.536, p < 0.05 for all). There was no correlation between TIS-total scores and disease severity (p = 0.102). DISCUSSION Patients with CD had impaired trunk control, especially in dynamic sitting balance and trunk coordination. Impaired trunk control was also associated with balance and functional mobility but not disease severity. These findings suggest that trunk control deficits should receive attention in the assessment and treatment of patients with CD.
Collapse
Affiliation(s)
- Fatih Söke
- Department of Physiotherapy and Rehabilitation, Gülhane Faculty of Physiotherapy and Rehabilitation, University of Health Sciences, Ankara, Turkey
| | | | - Mehmet Fevzi Öztekin
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bilge Koçer
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Selda Karakoç
- Department of Physiotherapy and Rehabilitation, Gülhane Institute of Health Science, University of Health Sciences, Ankara, Turkey
| | - Çağrı Gülşen
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Selim Selçuk Çomoğlu
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Hatice Ayşe Bora
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Costanzo M, Belvisi D, Berardelli I, Maraone A, Baione V, Ferrazzano G, Cutrona C, Leodori G, Pasquini M, Conte A, Fabbrini G, Defazio G, Berardelli A. Effect of Botulinum Toxin on Non-Motor Symptoms in Cervical Dystonia. Toxins (Basel) 2021; 13:toxins13090647. [PMID: 34564651 PMCID: PMC8472845 DOI: 10.3390/toxins13090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with cervical dystonia (CD) may display non-motor symptoms, including psychiatric disturbances, pain, and sleep disorders. Intramuscular injection of botulinum toxin type A (BoNT-A) is the most efficacious treatment for motor symptoms in CD, but little is known about its effects on non-motor manifestations. The aim of the present study was to longitudinally assess BoNT-A’s effects on CD non-motor symptoms and to investigate the relationship between BoNT-A-induced motor and non-motor changes. Forty-five patients with CD participated in the study. Patients underwent a clinical assessment that included the administration of standardized clinical scales assessing dystonic symptoms, psychiatric disturbances, pain, sleep disturbances, and disability. Clinical assessment was performed before and one and three months after BoNT-A injection. BoNT-A induced a significant improvement in dystonic symptoms, as well as in psychiatric disturbances, pain, and disability. Conversely, sleep disorders were unaffected by BoNT-A treatment. Motor and non-motor BoNT-A-induced changes showed a similar time course, but motor improvement did not correlate with non-motor changes after BoNT-A. Non-motor symptom changes after BoNT-A treatment are a complex phenomenon and are at least partially independent from motor symptom improvement.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Suicide Prevention Centre, Sant’Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00185 Rome, Italy;
| | - Annalisa Maraone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, Italy;
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence:
| |
Collapse
|