1
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
2
|
Wen X, Li G, Wang X, Hu X, Yang H. Modulation of audiovisual integration in the left and right sides: effects of side and spatial coherency. BMC Neurosci 2024; 25:40. [PMID: 39192193 DOI: 10.1186/s12868-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Using event-related potentials (ERPs), we aimed to investigate audiovisual integration neural mechanisms during a letter identification task in the left and right sides. Unimodal (A,V) and bimodal (AV) stimuli were presented on either side, with ERPs from unimodal (A,V) stimuli on the same side being compared to those from simultaneous bimodal stimuli (AV). Non-zero results of the AV-(A + V) difference waveforms indicated audiovisual integration on the left/right side. RESULTS When spatially coherent AV stimuli were presented on the right side, two significant ERP components in the integrated differential wave were noted. The N134 and N262, present in the first 300 ms of the AV-(A + V) integration difference wave, indicated significant audiovisual integration effects. However, when these stimuli were presented on the left side, there were no significant integration components. This audiovisual integration difference may stem from left/right asymmetry of cerebral hemisphere language processing. CONCLUSIONS Audiovisual letter information presented on the right side was easier to integrate, process, and represent. Additionally, only one significant integrative component peaked at 140 ms in the parietal cortex for spatially non-coherent AV stimuli and provided audiovisual multisensory integration, which could be attributed to some integrative neural processes that depend on the spatial congruity of the auditory and visual stimuli.
Collapse
Affiliation(s)
- XiaoHui Wen
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China.
| | - GuoQiang Li
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - XuHong Wang
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - XiaoLan Hu
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - HongJun Yang
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| |
Collapse
|
3
|
Mather D. Preventing the Development of Dyslexia: A Premature Writing Hypothesis. Percept Mot Skills 2022; 129:468-487. [PMID: 35084244 PMCID: PMC9198397 DOI: 10.1177/00315125221075001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been argued that dyslexia may develop in strongly left eye dominant children through learning to write using ipsilateral, right hemisphere motor pathways. New light on this theory has been cast by recent findings of atypical enhanced corpus callosum white matter in children with dyslexia, reflecting right to left hemisphere communication that is resistant to intensive remedial reading intervention. Enhanced corpus callosum white matter is consistent with uninhibited right to left hemisphere ipsilateral mirror-motor innervation, manifested as frequent mirror-letter writing errors in children with dyslexia. Delaying writing instruction until 7-8 years of age may prevent these errors and as well as the development of dyslexia. During the 7-8 year age period, visual-proprioceptive integration enables a child to mentally map whole word visual images onto kinaesthetic/proprioceptive letter engrams (memory representations). Hypothetically, this process is facilitated by anterior commissure activity involving inter-hemispheric transfer of ipsilateral mirror-to-non mirror motor movement. This postulate, involving delayed writing instruction pending further maturation, also receives indirect support from the remarkable proficiency leap among second graders reading Hebrew as Hebrew involves a leftward orthography in which ipsilateral right to left hemisphere innervation is uninhibited. Additionally, and more directly, normal reading comprehension for learning English among children with agenesis of the corpus callosum suggests that letter-sound decoding is not the sole route to proficient reading comprehension. In this paper, I make recommendations for obtaining empirical evidence of premature writing as a cause of dyslexia.
Collapse
Affiliation(s)
- David Mather
- Curriculum and Instruction8205University of Victoria
| |
Collapse
|
4
|
Martins M, Reis AM, Castro SL, Gaser C. Gray matter correlates of reading fluency deficits: SES matters, IQ does not. Brain Struct Funct 2021; 226:2585-2601. [PMID: 34357437 DOI: 10.1007/s00429-021-02353-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Brain correlates of reading ability have been intensely investigated. Most studies have focused on single-word reading and phonological processing, but the brain basis of reading fluency remains poorly explored to date. Here, in a voxel-based morphometry study with 8-year-old children, we compared fluent readers (n = 18; seven boys) with dysfluent readers with normal IQ (n = 18; six boys) and with low IQ (n = 18; ten boys). Relative to dysfluent readers, fluent readers had larger gray matter volume in the right superior temporal gyrus and the two subgroups of dysfluent readers did not differ from each other, as shown in frequentist and Bayesian analyses. Pairwise comparisons showed that dysfluent readers of normal and low IQ did not differ in core reading regions and that both subgroups had less gray matter volume than fluent readers in occipito-temporal, parieto-temporal and fusiform areas. We also examined gray matter volume in matched subgroups of dysfluent readers differing only in socioeconomic status (SES): lower-SES (n = 14; seven boys) vs. higher-SES (n = 14; seven boys). Higher-SES dysfluent readers had larger gray matter volume in the right angular gyrus than their lower-SES peers, and the volume of this cluster correlated positively with lexico-semantic fluency. Age, sex, IQ, and gray matter volume of the right angular cluster explained 68% of the variance in the reading fluency of higher-SES dysfluent readers. In sum, this study shows that gray matter correlates of dysfluent reading are independent of IQ, and suggests that SES modulates areas sub-serving lexico-semantic processes in dysfluent readers-two findings that may be useful to inform language/reading remediation programs.
Collapse
Affiliation(s)
- Marta Martins
- Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | | | - São Luís Castro
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|