1
|
Roshan JHN, Chamanabad AG, Mashhadi A, Motamedi M. Cathodal HD-tDCS and attention: A study on patients with intractable left lateral frontal lobe epilepsy. Epilepsy Res 2024; 199:107265. [PMID: 38071911 DOI: 10.1016/j.eplepsyres.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Defects in the attentional network in patients with epilepsy are influenced by factors such as the location of epileptic foci. Examining the impact of cathodal high-definition transcranial direct current stimulation (HD-tDCS) on attention components could provide insights into potential attention-related side effects of tDCS. This study aimed to investigate the effect of cathodal HD-tDCS on interictal epileptiform discharges (IEDs), auditory/visual (A/V) attention components, and reaction time (RT) in patients with intractable focal left lateral frontal lobe epilepsy (LFLE). METHODS To control for variations in individual epilepsy syndrome, 12 adult participants diagnosed with drug-resistant left LFLE with focal cortical IEDs on C3 underwent repeated measurements at pretest, posttest, and follow-up steps. 4 × 1 ring electrodes (cathode on C3 and four anodes on F3, P3, T3, and Cz) delivered 2 mA DC for 20 min per session for 10 consecutive days. The integrated visual and auditory continuous performance test (IVA+) assessed the A/V attention components and RT. One-way repeated-measure ANOVA was used. RESULTS The findings suggest a significant effect in reducing IEDs. The IVA+ results showed a significant improvement in auditory divided attention and visual selective and focused attention (p < 0.05). In the follow-up, these changes demonstrated lasting efficacy. A/V speed scales increased (p < 0.05), showing a significant decrease in reaction time. CONCLUSIONS Cathodal HD-tDCS significantly reduced IEDs and improved the components of auditory divided attention, visual focused attention, and visual selective attention, with a reduction in patient reaction time. A significant lasting, side-effect-free positive effect was observed for up to one month after the intervention.
Collapse
Affiliation(s)
| | - Ali Ghanaei Chamanabad
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran; Cognitive Science Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Mashhadi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran; Cognitive Science Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Motamedi
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Sina Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Mark JA, Ayaz H, Callan DE. Simultaneous fMRI and tDCS for Enhancing Training of Flight Tasks. Brain Sci 2023; 13:1024. [PMID: 37508957 PMCID: PMC10377527 DOI: 10.3390/brainsci13071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
There is a gap in our understanding of how best to apply transcranial direct-current stimulation (tDCS) to enhance learning in complex, realistic, and multifocus tasks such as aviation. Our goal is to assess the effects of tDCS and feedback training on task performance, brain activity, and connectivity using functional magnetic resonance imaging (fMRI). Experienced glider pilots were recruited to perform a one-day, three-run flight-simulator task involving varying difficulty conditions and a secondary auditory task, mimicking real flight requirements. The stimulation group (versus sham) received 1.5 mA high-definition HD-tDCS to the right dorsolateral prefrontal cortex (DLPFC) for 30 min during the training. Whole-brain fMRI was collected before, during, and after stimulation. Active stimulation improved piloting performance both during and post-training, particularly in novice pilots. The fMRI revealed a number of tDCS-induced effects on brain activation, including an increase in the left cerebellum and bilateral basal ganglia for the most difficult conditions, an increase in DLPFC activation and connectivity to the cerebellum during stimulation, and an inhibition in the secondary task-related auditory cortex and Broca's area. Here, we show that stimulation increases activity and connectivity in flight-related brain areas, particularly in novices, and increases the brain's ability to focus on flying and ignore distractors. These findings can guide applied neurostimulation in real pilot training to enhance skill acquisition and can be applied widely in other complex perceptual-motor real-world tasks.
Collapse
Affiliation(s)
- Jesse A Mark
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel E Callan
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto 619-0288, Japan
| |
Collapse
|
3
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
4
|
Martin DM, Berryhill ME, Dielenberg V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor Neurol Neurosci 2022:RNN211230. [PMID: 36404559 DOI: 10.3233/rnn-211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many psychiatric and neurological conditions are associated with cognitive impairment for which there are very limited treatment options. Brain stimulation methodologies show promise as novel therapeutics and have cognitive effects. Electroconvulsive therapy (ECT), known more for its related transient adverse cognitive effects, can produce significant cognitive improvement in the weeks following acute treatment. Transcranial magnetic stimulation (TMS) is increasingly used as a treatment for major depression and has acute cognitive effects. Emerging research from controlled studies suggests that repeated TMS treatments may additionally have cognitive benefit. ECT and TMS treatment cause neurotrophic changes, although whether these are associated with cognitive effects remains unclear. Transcranial electrical stimulation methods including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are in development as novel treatments for multiple psychiatric conditions. These treatments may also produce cognitive enhancement particularly when stimulation occurs concurrently with a cognitive task. This review summarizes the current clinical evidence for these brain stimulation treatments as therapeutics for enhancing cognition. Acute, or short-lasting, effects as well as longer-term effects from repeated treatments are reviewed, together with potential putative neural mechanisms. Areas of future research are highlighted to assist with optimization of these approaches for enhancing cognition.
Collapse
Affiliation(s)
- Donel M. Martin
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| | - Marian E. Berryhill
- Memory and Brain Lab, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Victoria Dielenberg
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Gordon MS, Seeto JXW, Dux PE, Filmer HL. Intervention is a better predictor of tDCS mind-wandering effects than subjective beliefs about experimental results. Sci Rep 2022; 12:13110. [PMID: 35908042 PMCID: PMC9338927 DOI: 10.1038/s41598-022-16545-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Blinding in non-invasive brain stimulation research is a topic of intense debate, especially regarding the efficacy of sham-controlled methods for transcranial direct current stimulation (tDCS). A common approach to assess blinding success is the inclusion of correct guess rate. However, this method cannot provide insight into the effect of unblinding on observed stimulation outcomes. Thus, the implementation of measures to systematically evaluate subjective expectation regarding stimulation is needed. Previous work evaluated subjective effects in an earlier study which reported a mind-wandering and tDCS data set and concluded that subjective belief drove the pattern of results observed. Here we consider the subjective and objective intervention effects in a key contrast from that data set-2 mA vs. sham-which was not examined in the reanalysis. In addition, we examine another key contrast from a different tDCS mind-wandering study that employed similar methodology. Our findings support objective intervention as the strongest predictor of the observed effects of mind-wandering in both re-analyses, over and above that of subjective intervention. However, it is important to control for and understand the possible inadequacies of sham-controlled methods.
Collapse
Affiliation(s)
- Matilda S Gordon
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia.
| | - Jennifer X W Seeto
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| |
Collapse
|
6
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Mizutani-Tiebel Y, Takahashi S, Karali T, Mezger E, Bulubas L, Papazova I, Dechantsreiter E, Stoecklein S, Papazov B, Thielscher A, Padberg F, Keeser D. Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study. Neuroimage Clin 2022; 34:103011. [PMID: 35487132 PMCID: PMC9125784 DOI: 10.1016/j.nicl.2022.103011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
MDD and SCZ showed lower prefrontal tDCS-induced e-field strengths compared to HC. Average e-field strengths did not significantly differ between MDD and SCZ patients. Inter-individual variability of e-field intensities and distribution was prominent. Inter-rater variability emphasizes the importance of standardized positioning.
Introduction Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose–response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. Method The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. Result On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. Conclusion MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose–response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany.
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Augsburg, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Boris Papazov
- NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; Munich Center for Neurosciences (MCN) - Brain & Mind, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
8
|
Johnson EL, Arciniega H, Jones KT, Kilgore-Gomez A, Berryhill ME. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage 2022; 250:118939. [PMID: 35104647 PMCID: PMC8923157 DOI: 10.1016/j.neuroimage.2022.118939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
A primary goal of translational neuroscience is to identify the neural mechanisms of age-related cognitive decline and develop protocols to maximally improve cognition. Here, we demonstrate how interventions that apply noninvasive neurostimulation to older adults improve working memory (WM). We found that one session of sham-controlled transcranial direct current stimulation (tDCS) selectively improved WM in older adults with more education, extending earlier work and underscoring the importance of identifying individual predictors of tDCS responsivity. Improvements in WM were associated with two distinct electrophysiological signatures. First, a broad enhancement of theta network synchrony tracked improvements in behavioral accuracy, with tDCS effects moderated by education level. Further analysis revealed that accuracy dynamics reflected an anterior-posterior network distribution regardless of cathode placement. Second, specific enhancements of theta-gamma phase-amplitude coupling (PAC) reflecting tDCS current flow tracked improvements in reaction time (RT). RT dynamics further explained inter-individual variability in WM improvement independent of education. These findings illuminate theta network synchrony and theta-gamma PAC as distinct but complementary mechanisms supporting WM in aging. Both mechanisms are amenable to intervention, the effectiveness of which can be predicted by individual demographic factors.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, 60611, United States.
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, United States
| | - Kevin T Jones
- Department of Neurology, Neuroscape, University of California-San Francisco, San Francisco, CA, 94158, United States
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States
| | - Marian E Berryhill
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States.
| |
Collapse
|
9
|
Schmicker M, Menze I, Schneider C, Taubert M, Zaehle T, Mueller NG. Making the rich richer: Frontoparietal tDCS enhances transfer effects of a single-session distractor inhibition training on working memory in high capacity individuals but reduces them in low capacity individuals. Neuroimage 2021; 242:118438. [PMID: 34332042 DOI: 10.1016/j.neuroimage.2021.118438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
Working memory (WM) performance depends on the ability to extract relevant while inhibiting irrelevant information from entering the WM storage. This distractor inhibition ability can be trained and is known to induce transfer effects on WM performance. Here we asked whether transfer on WM can be boosted by transcranial direct current stimulation (tDCS) during a single-session distractor inhibition training. As WM performance is ascribed to the frontoparietal network, in which prefrontal areas are associated with inhibiting distractors and posterior parietal areas with storing information, we placed the anode over the prefrontal and the cathode over the posterior parietal cortex during a single-session distractor inhibition training. This network-oriented stimulation protocol should enhance inhibition processes by shifting the neural activity from posterior to prefrontal regions. WM improved after a single-session distractor inhibition training under verum stimulation but only in subjects with a high WM capacity. In subjects with a low WM capacity, verum tDCS reduced the transfer effects on WM. We assume tDCS to strengthen the frontostriatal pathway in individuals with a high WM capacity leading to efficient inhibition of distractors. In contrast, the cathodal stimulation of the posterior parietal cortex might have hindered usual compensational mechanism in low capacity subjects, i.e. maintaining also irrelevant information in memory. Our results thus stress the need to adjust tDCS protocols to well-founded knowledge about neural networks and individual cognitive differences.
Collapse
Affiliation(s)
- Marlen Schmicker
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Inga Menze
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christine Schneider
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Chair for Training Science, Faculty for Humanities, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Notger G Mueller
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
10
|
Arciniega H, Shires J, Furlong S, Kilgore-Gomez A, Cerreta A, Murray NG, Berryhill ME. Impaired visual working memory and reduced connectivity in undergraduates with a history of mild traumatic brain injury. Sci Rep 2021; 11:2789. [PMID: 33531546 PMCID: PMC7854733 DOI: 10.1038/s41598-021-80995-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected.
Collapse
Affiliation(s)
- Hector Arciniega
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
| | - Jorja Shires
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA
| | - Sarah Furlong
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA
| | - Adelle Cerreta
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA
| | - Nicholas G Murray
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA
- School of Community Health Sciences, University of Nevada, Reno, 89557, USA
| | - Marian E Berryhill
- Department of Psychology, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, 1664 N. Virginia St., MS 296, Reno, NV, 89557, USA
| |
Collapse
|