1
|
Mallio CA, Buoso A, Stiffi M, Cea L, Vertulli D, Bernetti C, Di Gennaro G, van den Heuvel MP, Beomonte Zobel B. Mapping the Neural Basis of Neuroeconomics with Functional Magnetic Resonance Imaging: A Narrative Literature Review. Brain Sci 2024; 14:511. [PMID: 38790489 PMCID: PMC11120557 DOI: 10.3390/brainsci14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies.
Collapse
Affiliation(s)
- Carlo A. Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Andrea Buoso
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Massimo Stiffi
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Laura Cea
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Daniele Vertulli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Caterina Bernetti
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Medical Statistics, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands;
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| |
Collapse
|
2
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
3
|
Therrien S, Anthony M, Turnbull A, Lin FV. Risk-Taking Behavior Differs Between Older Adults with and without Mild Cognitive Impairment. J Alzheimers Dis 2024; 100:1227-1235. [PMID: 39031355 DOI: 10.3233/jad-231448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Adequately evaluating risk and making decisions is vital but understudied for older adults living independently but with compromised cognition, as seen in those with mild cognitive impairment (MCI), specifically those with amnestic MCI (aMCI) which is associated with higher risk of conversion to Alzheimer's disease. Objective We propose to comprehensively evaluate risk-taking behaviors across domains important for everyday activities between an aMCI group and their cognitively healthy counterparts (HC). Methods A case-control study design. Data on risk-taking behaviors via the Domain-Specific Risk-Taking Scale (DOSPERT), and candidate confounding mental health factors (i.e., neurodegeneration, depression, and fatigue) were collected. Analyses on group difference and interaction between group and confounding factors on risk-taking behaviors were conducted. Results The aMCI group showed a higher likelihood of risk-taking than HC (t = 4.38, df = 73, p < 0.001). Moderation analysis showed fatigue (F = 5.91, p = 0.018) and presence of depression (F = 4.52, p = 0.037), but not neurodegeneration, as significant moderators for group and DOSPERT total score, controlling for sex. In post-hoc analyses, there was a significant relationship between both fatigue (B = -7.83, SE = 3.65, t = -2.14, p = 0.036), and presence of depression (B = -20.80, SE = 9.97, t = -2.09, p = 0.041), with DOSPERT total score for HC but not for aMCI. There were no significant relationships between neurodegeneration, fatigue, or depression with any specific risk-taking domains after correction for multiple comparisons. Conclusions Our results show differences in risk-taking behavior between older adults with and without intact cognition, and overall decision-making is affected by fatigue and depression in HC but not aMCI, together suggesting the importance of cognition in the ability to adjust risk-taking behaviors.
Collapse
Affiliation(s)
- Sarah Therrien
- Department of Psychiatry and Behavioral Sciences, CogT Lab, Stanford University, Palo Alto, CA, USA
| | - Mia Anthony
- Department of Psychiatry and Behavioral Sciences, CogT Lab, Stanford University, Palo Alto, CA, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, CogT Lab, Stanford University, Palo Alto, CA, USA
| | - F Vankee Lin
- Department of Psychiatry and Behavioral Sciences, CogT Lab, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Akbari S, Haghani M, Ghobadi M, Hooshmandi E, Haghighi AB, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Zabihi S, Nemati M, Bayat M. Combination Therapy with Platelet-Rich Plasma and Epidermal Neural Crest Stem Cells Increases Treatment Efficacy in Vascular Dementia. Stem Cells Int 2023; 2023:3784843. [PMID: 38146481 PMCID: PMC10749736 DOI: 10.1155/2023/3784843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
This study aimed to evaluate the efficacy and treatment mechanism of platelet-rich plasma (PRP) and neural crest-derived epidermal stem cells (ESCs) in their administration alone and combination in vascular dementia (VaD) model by two-vessel occlusion (2VO). Methods. Sixty-six rats were divided into six groups: the control, sham, 2VO + vehicle, 2VO + PRP, 2VO + ESC, and 2VO + ESC + PRP. The treated groups received 1 million cells on days 4, 14, and 21 with or without 500 µl PRP (twice a week) after 2VO. The memory performance and anxiety were evaluated by behavioral tests including open field, passive avoidance, and Morris water maze. The basal-synaptic transmission (BST) and long-term potentiation (LTP) were assessed through field-potential recordings of the CA1. The mRNA expression levels of IGF-1, TGF-β1, PSD-95, and GSk-3β were measured in the rat hippocampus by quantitative reverse transcription polymerase chain reaction. Results. The results demonstrated impaired learning, memory, and synaptic plasticity in the 2VO rats, along with a significant decrease in the expression of IGF-1, TGF-β1, PSD-95, and upregulation of GSK-3β. Treatment with ESC alone and ESC + PRP showed similar improvements in spatial memory and LTP induction, with associated upregulation of PSD-95 and downregulation of GSK-3β. However, only the ESC + PRP group showed recovery in BST. Furthermore, combination therapy was more effective than PRP monotherapy for LTP and memory. Conclusions. The transplantation of ESC showed better effects than PRP alone, and combination therapy increased the treatment efficacy with the recovery of BST. This finding may be a clue for the combination therapy of ESC and PRP for VaD.
Collapse
Affiliation(s)
- Somayeh Akbari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Ghobadi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrbanoo Zabihi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Sadeghi S, Mohammadian F, Tehrani-Doost M, Gholami K, Mohebbi N. Evaluating the Effects of Rivastigmine on Decision-Making in Patients with Mild Cognitive Impairment by Cambridge Neuropsychological Test Automated Battery (CANTAB); A Randomized, Double-Blind, Placebo-Controlled Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e138943. [PMID: 38444714 PMCID: PMC10912857 DOI: 10.5812/ijpr-138943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 03/07/2024]
Abstract
Background Decision-making is a complex process, and most studies showed that patients with mild cognitive impairment (MCI) make worse decisions than healthy people. Objectives This study aims to evaluate the effect of rivastigmine on the decision-making of MCI patients using the Cambridge Neuropsychological Test Automated Battery (CANTAB) tests. Methods The study was conducted at the Roozbeh Hospital neurology clinic, and 30 patients with mild cognitive impairment over 40 years old were randomly recruited to receive rivastigmine or placebo twice daily for 12 weeks. The initial dose of rivastigmine or placebo was 1.5 mg twice daily and was increased to 3 mg twice daily per patient compliance. A CANTAB test was conducted before and following the intervention. Results The mean age of patients in the rivastigmine group was 58.93 ± 10.88, and in the placebo group was 59.33 ± 10.34. The median MMSE (Mini-Mental State Examination) was 26 (IQR = 25 - 26) in both groups. Patients in the rivastigmine group showed significant differences in all subgroup tests of CGT, IST, and SST except in risk adjustment in the CGT test, discrimination in the IST test, and median correct RT on the go trial and SSRT in the SST test. The most commonly reported adverse effects were gastrointestinal complications. Conclusions According to the results, rivastigmine significantly improved the primary decision-making outcomes in comparison with placebo.
Collapse
Affiliation(s)
- Setayesh Sadeghi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medial Sciences, Tehran, Iran
| | - Kheirollah Gholami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| | - Niayesh Mohebbi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|