1
|
Nazir M, Shakil S, Khurshid K. End-to-End Multi-task Learning Architecture for Brain Tumor Analysis with Uncertainty Estimation in MRI Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2149-2172. [PMID: 38565728 PMCID: PMC11522262 DOI: 10.1007/s10278-024-01009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024]
Abstract
Brain tumors are a threat to life for every other human being, be it adults or children. Gliomas are one of the deadliest brain tumors with an extremely difficult diagnosis. The reason is their complex and heterogenous structure which gives rise to subjective as well as objective errors. Their manual segmentation is a laborious task due to their complex structure and irregular appearance. To cater to all these issues, a lot of research has been done and is going on to develop AI-based solutions that can help doctors and radiologists in the effective diagnosis of gliomas with the least subjective and objective errors, but an end-to-end system is still missing. An all-in-one framework has been proposed in this research. The developed end-to-end multi-task learning (MTL) architecture with a feature attention module can classify, segment, and predict the overall survival of gliomas by leveraging task relationships between similar tasks. Uncertainty estimation has also been incorporated into the framework to enhance the confidence level of healthcare practitioners. Extensive experimentation was performed by using combinations of MRI sequences. Brain tumor segmentation (BraTS) challenge datasets of 2019 and 2020 were used for experimental purposes. Results of the best model with four sequences show 95.1% accuracy for classification, 86.3% dice score for segmentation, and a mean absolute error (MAE) of 456.59 for survival prediction on the test data. It is evident from the results that deep learning-based MTL models have the potential to automate the whole brain tumor analysis process and give efficient results with least inference time without human intervention. Uncertainty quantification confirms the idea that more data can improve the generalization ability and in turn can produce more accurate results with less uncertainty. The proposed model has the potential to be utilized in a clinical setup for the initial screening of glioma patients.
Collapse
Affiliation(s)
- Maria Nazir
- Medical Imaging and Diagnostics Lab, NCAI COMSATS University Islamabad, Islamabad, Pakistan.
- iVision Lab, Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan.
- BiCoNeS Lab, Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan.
| | - Sadia Shakil
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Khurram Khurshid
- iVision Lab, Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Al-Kadi OS, Al-Emaryeen R, Al-Nahhas S, Almallahi I, Braik R, Mahafza W. Empowering brain cancer diagnosis: harnessing artificial intelligence for advanced imaging insights. Rev Neurosci 2024; 35:399-419. [PMID: 38291768 DOI: 10.1515/revneuro-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024]
Abstract
Artificial intelligence (AI) is increasingly being used in the medical field, specifically for brain cancer imaging. In this review, we explore how AI-powered medical imaging can impact the diagnosis, prognosis, and treatment of brain cancer. We discuss various AI techniques, including deep learning and causality learning, and their relevance. Additionally, we examine current applications that provide practical solutions for detecting, classifying, segmenting, and registering brain tumors. Although challenges such as data quality, availability, interpretability, transparency, and ethics persist, we emphasise the enormous potential of intelligent applications in standardising procedures and enhancing personalised treatment, leading to improved patient outcomes. Innovative AI solutions have the power to revolutionise neuro-oncology by enhancing the quality of routine clinical practice.
Collapse
Affiliation(s)
- Omar S Al-Kadi
- King Abdullah II School for Information Technology, University of Jordan, Amman, 11942, Jordan
| | - Roa'a Al-Emaryeen
- King Abdullah II School for Information Technology, University of Jordan, Amman, 11942, Jordan
| | - Sara Al-Nahhas
- King Abdullah II School for Information Technology, University of Jordan, Amman, 11942, Jordan
| | - Isra'a Almallahi
- Department of Diagnostic Radiology, Jordan University Hospital, Amman, 11942, Jordan
| | - Ruba Braik
- Department of Diagnostic Radiology, Jordan University Hospital, Amman, 11942, Jordan
| | - Waleed Mahafza
- Department of Diagnostic Radiology, Jordan University Hospital, Amman, 11942, Jordan
| |
Collapse
|
3
|
Reddy KR, Batchu RK, Polinati S, Bavirisetti DP. Design of a medical decision-supporting system for the identification of brain tumors using entropy-based thresholding and non-local texture features. Front Hum Neurosci 2023; 17:1157155. [PMID: 37033909 PMCID: PMC10073563 DOI: 10.3389/fnhum.2023.1157155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Brain tumors arise due to abnormal growth of cells at any brain location with uneven boundaries and shapes. Usually, they proliferate rapidly, and their size increases by approximately 1.4% a day, resulting in invisible illness and psychological and behavioral changes in the human body. It is one of the leading causes of the increase in the mortality rate of adults worldwide. Therefore, early prediction of brain tumors is crucial in saving a patient's life. In addition, selecting a suitable imaging sequence also plays a significant role in treating brain tumors. Among available techniques, the magnetic resonance (MR) imaging modality is widely used due to its noninvasive nature and ability to represent the inherent details of brain tissue. Several computer-assisted diagnosis (CAD) approaches have recently been developed based on these observations. However, there is scope for improvement due to tumor characteristics and image noise variations. Hence, it is essential to establish a new paradigm. Methods This paper attempts to develop a new medical decision-support system for detecting and differentiating brain tumors from MR images. In the implemented approach, initially, we improve the contrast and brightness using the tuned single-scale retinex (TSSR) approach. Then, we extract the infected tumor region(s) using maximum entropy-based thresholding and morphological operations. Furthermore, we obtain the relevant texture features based on the non-local binary pattern (NLBP) feature descriptor. Finally, the extracted features are subjected to a support vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), and GentleBoost (GB). Results The presented CAD model achieved 99.75% classification accuracy with 5-fold cross-validation and a 91.88% dice similarity score, which is higher than the existing models. Discussions By analyzing the experimental outcomes, we conclude that our method can be used as a supportive clinical tool for physicians during the diagnosis of brain tumors.
Collapse
Affiliation(s)
- K. Rasool Reddy
- Department of Electronics and Communication Engineering, Malla Reddy College of Engineering and Technology (MRCET), Hyderabad, India
| | - Raj Kumar Batchu
- Department of Computer Science and Engineering (Data Science), Prasad V. Potluri Siddhartha Institute of Technology (PVPSIT), Vijayawada, India
| | - Srinivasu Polinati
- Department of Electronics and Communication Engineering, Vignan’s Institute of Engineering for Women (VIEW), Visakhapatnam, India
| | - Durga Prasad Bavirisetti
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Taher F, Shoaib MR, Emara HM, Abdelwahab KM, Abd El-Samie FE, Haweel MT. Efficient framework for brain tumor detection using different deep learning techniques. Front Public Health 2022; 10:959667. [PMID: 36530682 PMCID: PMC9752904 DOI: 10.3389/fpubh.2022.959667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
The brain tumor is an urgent malignancy caused by unregulated cell division. Tumors are classified using a biopsy, which is normally performed after the final brain surgery. Deep learning technology advancements have assisted the health professionals in medical imaging for the medical diagnosis of several symptoms. In this paper, transfer-learning-based models in addition to a Convolutional Neural Network (CNN) called BRAIN-TUMOR-net trained from scratch are introduced to classify brain magnetic resonance images into tumor or normal cases. A comparison between the pre-trained InceptionResNetv2, Inceptionv3, and ResNet50 models and the proposed BRAIN-TUMOR-net is introduced. The performance of the proposed model is tested on three publicly available Magnetic Resonance Imaging (MRI) datasets. The simulation results show that the BRAIN-TUMOR-net achieves the highest accuracy compared to other models. It achieves 100%, 97%, and 84.78% accuracy levels for three different MRI datasets. In addition, the k-fold cross-validation technique is used to allow robust classification. Moreover, three different unsupervised clustering techniques are utilized for segmentation.
Collapse
Affiliation(s)
- Fatma Taher
- College of Technological Innovative, Zayed University, Abu Dhabi, United Arab Emirates
| | - Mohamed R. Shoaib
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Heba M. Emara
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt,*Correspondence: Heba M. Emara
| | | | - Fathi E. Abd El-Samie
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt,Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad T. Haweel
- Department of Electrical Engineering, Shaqra University, Shaqraa, Saudi Arabia
| |
Collapse
|
5
|
An Enhanced Machine Learning Approach for Brain MRI Classification. Diagnostics (Basel) 2022; 12:diagnostics12112791. [PMID: 36428850 PMCID: PMC9689115 DOI: 10.3390/diagnostics12112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets with a small number of images, but their performance deteriorated when applied to large MRI datasets. Therefore, the objective is to develop a quick and trustworthy classification system that can sustain the best performance over a comprehensive MRI dataset. This paper presents a robust approach that has the ability to analyze and classify different types of brain diseases using MRI images. In this paper, global histogram equalization is utilized to remove unwanted details from the MRI images. After the picture has been enhanced, a symlet wavelet transform-based technique has been suggested that can extract the best features from the MRI images for feature extraction. On gray scale images, the suggested feature extraction approach is a compactly supported wavelet with the lowest asymmetry and the most vanishing moments for a given support width. Because the symlet wavelet can accommodate the orthogonal, biorthogonal, and reverse biorthogonal features of gray scale images, it delivers higher classification results. Following the extraction of the best feature, the linear discriminant analysis (LDA) is employed to minimize the feature space's dimensions. The model was trained and evaluated using logistic regression, and it correctly classified several types of brain illnesses based on MRI pictures. To illustrate the importance of the proposed strategy, a standard dataset from Harvard Medical School and the Open Access Series of Imaging Studies (OASIS), which encompasses 24 different brain disorders (including normal), is used. The proposed technique achieved the best classification accuracy of 96.6% when measured against current cutting-edge systems.
Collapse
|
6
|
Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Haq EU, Jianjun H, Huarong X, Li K, Weng L. A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6446680. [PMID: 36035291 PMCID: PMC9400402 DOI: 10.1155/2022/6446680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Conventional medical imaging and machine learning techniques are not perfect enough to correctly segment the brain tumor in MRI as the proper identification and segmentation of tumor borders are one of the most important criteria of tumor extraction. The existing approaches are time-consuming, incursive, and susceptible to human mistake. These drawbacks highlight the importance of developing a completely automated deep learning-based approach for segmentation and classification of brain tumors. The expedient and prompt segmentation and classification of a brain tumor are critical for accurate clinical diagnosis and adequately treatment. As a result, deep learning-based brain tumor segmentation and classification algorithms are extensively employed. In the deep learning-based brain tumor segmentation and classification technique, the CNN model has an excellent brain segmentation and classification effect. In this work, an integrated and hybrid approach based on deep convolutional neural network and machine learning classifiers is proposed for the accurate segmentation and classification of brain MRI tumor. A CNN is proposed in the first stage to learn the feature map from image space of brain MRI into the tumor marker region. In the second step, a faster region-based CNN is developed for the localization of tumor region followed by region proposal network (RPN). In the last step, a deep convolutional neural network and machine learning classifiers are incorporated in series in order to further refine the segmentation and classification process to obtain more accurate results and findings. The proposed model's performance is assessed based on evaluation metrics extensively used in medical image processing. The experimental results validate that the proposed deep CNN and SVM-RBF classifier achieved an accuracy of 98.3% and a dice similarity coefficient (DSC) of 97.8% on the task of classifying brain tumors as gliomas, meningioma, or pituitary using brain dataset-1, while on Figshare dataset, it achieved an accuracy of 98.0% and a DSC of 97.1% on classifying brain tumors as gliomas, meningioma, or pituitary. The segmentation and classification results demonstrate that the proposed model outperforms state-of-the-art techniques by a significant margin.
Collapse
Affiliation(s)
- Ejaz Ul Haq
- Guangdong Key Laboratory of Intelligent Information Processing, School of Electronics and Information Engineering, Shenzhen University, China
- School of Computer and Information Engineering, Xiamen University of Technology, China
| | - Huang Jianjun
- Guangdong Key Laboratory of Intelligent Information Processing, School of Electronics and Information Engineering, Shenzhen University, China
| | - Xu Huarong
- School of Computer and Information Engineering, Xiamen University of Technology, China
| | - Kang Li
- Guangdong Key Laboratory of Intelligent Information Processing, School of Electronics and Information Engineering, Shenzhen University, China
| | - Lifen Weng
- School of Computer and Information Engineering, Xiamen University of Technology, China
| |
Collapse
|