1
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024:1-18. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
2
|
Doval S, Nebreda A, Bruña R. Functional connectivity across the lifespan: a cross-sectional analysis of changes. Cereb Cortex 2024; 34:bhae396. [PMID: 39367726 DOI: 10.1093/cercor/bhae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
In the era of functional brain networks, our understanding of how they evolve across life in a healthy population remains limited. Here, we investigate functional connectivity across the human lifespan using magnetoencephalography in a cohort of 792 healthy individuals, categorized into young (13 to 30 yr), middle (31 to 54 yr), and late adulthood (55 to 80 yr). Employing corrected imaginary phase-locking value, we map the evolving landscapes of connectivity within delta, theta, alpha, beta, and gamma classical frequency bands among brain areas. Our findings reveal significant shifts in functional connectivity patterns across all frequency bands, with certain networks exhibiting increased connectivity and others decreased, dependent on the frequency band and specific age groups, showcasing the dynamic reorganization of neural networks as age increases. This detailed exploration provides, to our knowledge, the first all-encompassing view of how electrophysiological functional connectivity evolves at different life stages, offering new insights into the brain's adaptability and the intricate interplay of cognitive aging and network connectivity. This work not only contributes to the body of knowledge on cognitive aging and neurological health but also emphasizes the need for further research to develop targeted interventions for maintaining cognitive function in the aging population.
Collapse
Affiliation(s)
- Sandra Doval
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
3
|
Voits T, DeLuca V, Hao J, Elin K, Abutalebi J, Duñabeitia JA, Berglund G, Gabrielsen A, Rook J, Thomsen H, Waagen P, Rothman J. Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan. Neurobiol Aging 2024; 140:70-80. [PMID: 38735176 DOI: 10.1016/j.neurobiolaging.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
Multilingualism has been demonstrated to lead to a more favorable trajectory of neurocognitive aging, yet our understanding of its effect on neurocognition across the lifespan remains limited. We collected resting state EEG recordings from a sample of multilingual individuals across a wide age range. Additionally, we obtained data on participant multilingual language use patterns alongside other known lifestyle enrichment factors. Language experience was operationalized via a modified multilingual diversity (MLD) score. Generalized additive modeling was employed to examine the effects and interactions of age and MLD on resting state oscillatory power and coherence. The data suggest an independent modulatory effect of individualized multilingual engagement on age-related differences in whole brain resting state power across alpha and theta bands, and an interaction between age and MLD on resting state coherence in alpha, theta, and low beta. These results provide evidence of multilingual engagement as an independent correlational factor related to differences in resting state EEG power, consistent with the claim that multilingualism can serve as a protective factor in neurocognitive aging.
Collapse
Affiliation(s)
- Toms Voits
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden; UiT the Arctic University of Norway, Tromsø, Norway.
| | | | - Jiuzhou Hao
- UiT the Arctic University of Norway, Tromsø, Norway
| | - Kirill Elin
- UiT the Arctic University of Norway, Tromsø, Norway
| | - Jubin Abutalebi
- UiT the Arctic University of Norway, Tromsø, Norway; Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
| | - Jon Andoni Duñabeitia
- UiT the Arctic University of Norway, Tromsø, Norway; Universidad Nebrija Research Center in Cognition (CINC), Nebrija University, Madrid, Spain
| | | | | | - Janine Rook
- Department of Applied Linguistics, University of Groningen, Groningen, the Netherlands
| | - Hilde Thomsen
- UiT the Arctic University of Norway, Tromsø, Norway; Université Côte d'Azur, Nice, France
| | | | - Jason Rothman
- UiT the Arctic University of Norway, Tromsø, Norway; Universidad Nebrija Research Center in Cognition (CINC), Nebrija University, Madrid, Spain
| |
Collapse
|
4
|
Jauny G, Mijalkov M, Canal-Garcia A, Volpe G, Pereira J, Eustache F, Hinault T. Linking structural and functional changes during aging using multilayer brain network analysis. Commun Biol 2024; 7:239. [PMID: 38418523 PMCID: PMC10902297 DOI: 10.1038/s42003-024-05927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
Brain structure and function are intimately linked, however this association remains poorly understood and the complexity of this relationship has remained understudied. Healthy aging is characterised by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional (magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of connectivity patterns between brain structure and function in the parietal and temporal regions (alpha frequency band) is associated with cognitive performance in healthy older individuals. These results highlight the impact of structural connectivity changes on the reorganisation of functional connectivity associated with the preservation of cognitive function, and provide a mechanistic understanding of the concepts of brain maintenance and compensation with aging. Investigation of the link between structure and function could thus represent a new marker of individual variability, and of pathological changes.
Collapse
Affiliation(s)
- Gwendolyn Jauny
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
5
|
Hinault T, Baillet S, Courtney SM. Age-related changes of deep-brain neurophysiological activity. Cereb Cortex 2023; 33:3960-3968. [PMID: 35989316 PMCID: PMC10068274 DOI: 10.1093/cercor/bhac319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022] Open
Abstract
Cognitive decline with age is associated with brain atrophy and reduced brain activations, but the underlying neurophysiological mechanisms are unclear, especially in deeper brain structures primarily affected by healthy aging or neurodegenerative processes. Here, we characterize time-resolved, resting-state magnetoencephalography activity of the hippocampus and subcortical brain regions in a large cohort of healthy young (20-30 years) and older (70-80 years) volunteers from the Cam-CAN (Cambridge Centre for Ageing and Neuroscience) open repository. The data show age-related changes in both rhythmic and arrhythmic signal strength in multiple deeper brain regions, including the hippocampus, striatum, and thalamus. We observe a slowing of neural activity across deeper brain regions, with increased delta and reduced gamma activity, which echoes previous reports of cortical slowing. We also report reduced occipito-parietal alpha peak associated with increased theta-band activity in the hippocampus, an effect that may reflect compensatory processes as theta activity, and slope of arrhythmic activity were more strongly expressed when short-term memory performances were preserved. Overall, this study advances the understanding of the biological nature of inter-individual variability in aging. The data provide new insight into how hippocampus and subcortical neurophysiological activity evolve with biological age, and highlight frequency-specific effects associated with cognitive decline versus cognitive maintenance.
Collapse
Affiliation(s)
- T Hinault
- U1077 INSERM-EPHE-UNICAEN, Caen 14032, France
| | - S Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal QC, H3A 2B4, Canada
| | - S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD 21205, United States
- Department of Neuroscience, Johns Hopkins University, MD 21205, United States
| |
Collapse
|