1
|
Li LL, Wu JJ, Li KP, Jin J, Xiang YT, Hua XY, Zheng MX, Xu JG. Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis. Neurol Sci 2024; 45:3641-3681. [PMID: 38520639 DOI: 10.1007/s10072-024-07437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The objectives of the study were to systematically evaluate the rehabilitation effect of noninvasive brain stimulation (NIBS) on upper extremity motor function and activities of daily living in stroke patients and to prioritize various stimulation protocols for reliable evidence-based medical recommendations in patients with upper extremity motor dysfunction after stroke. Web of Science, PubMed, Embase, Cochrane Library, CNKI, Wanfang, VIP, and CBM were searched to collect all randomized controlled trials (RCTs) of NIBS to improve upper extremity motor function in stroke patients. The retrieval time was from the establishment of all databases to May 2023. According to the Cochrane system evaluation manual, the quality of the included studies was evaluated, and the data were extracted. Statistical analysis was carried out by using RevMan 5.3, R 4.3.0, and Stata 17.0 software. Finally, 94 RCTs were included, with a total of 5546 patients. Meta-analysis showed that NIBS improved the Fugl-Meyer assessment (FMA) score (mean difference (MD) = 6.51, 95% CI 6.20 ~ 6.82, P < 0.05), MBI score (MD = 7.69, 95% CI 6.57 ~ 8.81, P < 0.05), ARAT score (MD = 5.06, 95% CI 3.85 ~ 6.27, P < 0.05), and motor evoked potential (MEP) amplitude. The modified Ashworth scale score (MD = - 0.37, 95% CI - 0.60 to - 0.14, P < 0.05), National Institutes of Health Stroke Scale score (MD = - 2.17, 95% CI - 3.32 to - 1.11, P < 0.05), incubation period of MEP (MD = - 0.72, 95% CI - 1.06 to - 0.38, P < 0.05), and central motor conduction time (MD = - 0.90, 95% CI - 1.29 to - 0.50, P < 0.05) were decreased in stroke patients. Network meta-analysis showed that the order of interventions in improving FMA scores from high to low was anodal-transcranial direct current stimulation (tDCS) (surface under the cumulative ranking curve (SUCRA) = 83.7%) > cathodal-tDCS (SUCRA = 80.2%) > high-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (SUCRA = 68.5%) > low-frequency (LF)-rTMS (SUCRA = 66.5%) > continuous theta burst stimulation (cTBS) (SUCRA = 54.2%) > bilateral-tDCS (SUCRA = 45.2%) > intermittent theta burst stimulation (iTBS) (SUCRA = 34.1%) > sham-NIBS (SUCRA = 16.0%) > CR (SUCRA = 1.6%). In terms of improving MBI scores, the order from high to low was anodal-tDCS (SUCRA = 88.7%) > cathodal-tDCS (SUCRA = 85.4%) > HF-rTMS (SUCRA = 63.4%) > bilateral-tDCS (SUCRA = 56.0%) > LF-rTMS (SUCRA = 54.2%) > iTBS (SUCRA = 32.4%) > sham-NIBS (SUCRA = 13.8%) > CR (SUCRA = 6.1%). NIBS can effectively improve upper extremity motor function and activities of daily living after stroke. Among the various NIBS protocols, anodal-tDCS demonstrated the most significant intervention effect, followed by cathodal-tDCS and HF-rTMS.
Collapse
Affiliation(s)
- Ling-Ling Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Jia Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Kun-Peng Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Ting Xiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu-Yun Hua
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mou-Xiong Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Guang Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Mu C, Dang X, Luo XJ. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav 2024; 8:1417-1428. [PMID: 38724650 DOI: 10.1038/s41562-024-01879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.
Collapse
Affiliation(s)
- Changgai Mu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xinglun Dang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiong-Jian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Liu Y, Wang H, Ding Y. The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding. Interdiscip Sci 2024; 16:141-159. [PMID: 38060171 DOI: 10.1007/s12539-023-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification.
Collapse
Affiliation(s)
- Yanting Liu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Hao Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Zheng S, Feng S, Yao H, Dong L, Feng Z, Liu X, Zhang B, Jia H, Ning Y. Altered functional connectivity after acute sleep deprivation reveals potential locations for noninvasive brain stimulation techniques. Sleep Med 2023; 110:212-219. [PMID: 37634325 DOI: 10.1016/j.sleep.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUNDS Non-invasive brain stimulation (NIBS) techniques are emerging as efficacious treatments for sleep deprivation (SD). However, the stimulation location of NIBS (e.g. transcranial magnetic stimulation and transcranial direct current stimulation) on intervening acute SD is limited in previous studies. In this study, we aimed to investigate potentially effective targets of NIBS on intervening acute SD. METHODS We firstly performed a meta-analysis of 95 functional magnetic resonance imaging studies to find SD-related brain regions as regions of interest (ROI). Subsequently, we used resting-state functional connectivity analysis in 32 young individuals suffering from 24 h SD to identify brain surface regions associated with the ROIs. Finally, we applied 10-20 system coordinates to locate scalp sites for NIBS corresponding to the brain surface regions. RESULTS We identified the bilateral dorsolateral prefrontal cortex, bilateral inferior frontal gyrus, left supplementary motor area, precentral, right precuneus, bilateral inferior parietal gyrus, right middle temporal gyrus, and superior frontal gyrus as potential targets of NIBS for intervening SD. The 10-20 system coordinates corresponding to these brain surface regions were identified as potential sites for NIBS. CONCLUSIONS In conclusion, we identified several potential targets which could provide alternative stimulation locations for the use of NIBS on young patients suffering from acute SD.
Collapse
Affiliation(s)
- Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Sitong Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Hao Yao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linrui Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhengtian Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xinzi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Binlong Zhang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Liu A, Gong C, Wang B, Sun J, Jiang Z. Non-invasive brain stimulation for patient with autism: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1147327. [PMID: 37457781 PMCID: PMC10338880 DOI: 10.3389/fpsyt.2023.1147327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To comprehensively evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with autism spectrum disorder (ASD) in randomized controlled trials (RCT), providing a reference for future research on the same topic. Methods Five databases were searched (Pubmed, Web of Science, Medline, Embase, and Cochrane library) and tracked relevant references, Meta-analysis was performed using RevMan 5.3 software. Results Twenty-two references (829 participants) were included. The results of the meta-analysis showed that NIBS had positive effects on repetitive and stereotypical behaviors, cognitive function, and executive function in autistic patients. Most of the included studies had a moderate to high risk of bias, Mainly because of the lack of blinding of subjects and assessors to treatment assignment, as well as the lack of continuous observation of treatment effects. Conclusion Available evidence supports an improvement in some aspects of NIBS in patients with ASD. However, due to the quality of the original studies and significant publication bias, this evidence must be treated with caution. Further large multicenter randomized double-blind controlled trials and appropriate follow-up observations are needed to further evaluate the specific efficacy of NIBS in patients with ASD.
Collapse
Affiliation(s)
- Annan Liu
- Jiamusi University Affiliated No.3 Hospital, Jiamusi, China
| | - Chao Gong
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Bobo Wang
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Jiaxing Sun
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Zhimei Jiang
- Jiamusi University College of Rehabilitation Medicine, Jiamusi, Heilongjiang, China
| |
Collapse
|
8
|
Shi C, Xin X, Zhang J. A novel multigranularity feature-selection method based on neighborhood mutual information and its application in autistic patient identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Peña J, Muthalib M, Sampedro A, Cardoso‐Botelho M, Zabala O, Ibarretxe‐Bilbao N, García‐Guerrero A, Zubiaurre‐Elorza L, Ojeda N. Enhancing Creativity With Combined Transcranial Direct Current and Random Noise Stimulation of the Left Dorsolateral Prefrontal Cortex and Inferior Frontal Gyrus. JOURNAL OF CREATIVE BEHAVIOR 2022. [DOI: 10.1002/jocb.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Potential Targets for Noninvasive Brain Stimulation on Depersonalization-Derealization Disorder. Brain Sci 2022; 12:brainsci12081112. [PMID: 36009174 PMCID: PMC9406113 DOI: 10.3390/brainsci12081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Non-invasive brain stimulation seems to be beneficial for DPD patients. However, the sites used in previous studies were empirical. Exploring new stimulation locations via functional magnetic resonance imaging may improve the efficacy. OBJECTIVES The objective was to find potential locations for non-invasive brain stimulation on the depersonalization-derealization disorder. METHODS We explored the potential brain surface regions from three pipelines: pipeline 1: activation likelihood estimation meta-analysis (five studies with 36 foci included); pipeline 2: functional connectivity analysis based on DPD-network (76 subjects included); and pipeline 3: functional connectivity analysis based on DPD regions of interest from the meta-analysis. Potential targets were the 10-20 system coordinates for brain surface regions. RESULTS We identified several potential brain surface regions, including the bilateral medial prefrontal cortex, dorsal lateral prefrontal cortex, superior parietal gyrus, superior temporal gyrus, and right ventrolateral prefrontal cortex as potential sites. CONCLUSION Our findings of the potential stimulation targets might help clinicians optimize the application of non-invasive brain stimulation therapy in individuals with DPD.
Collapse
|
11
|
Melillo R, Leisman G, Machado C, Machado-Ferrer Y, Chinchilla-Acosta M, Kamgang S, Melillo T, Carmeli E. Retained Primitive Reflexes and Potential for Intervention in Autistic Spectrum Disorders. Front Neurol 2022; 13:922322. [PMID: 35873782 PMCID: PMC9301367 DOI: 10.3389/fneur.2022.922322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
We provide evidence to support the contention that many aspects of Autistic Spectrum Disorder (ASD) are related to interregional brain functional disconnectivity associated with maturational delays in the development of brain networks. We think a delay in brain maturation in some networks may result in an increase in cortical maturation and development in other networks, leading to a developmental asynchrony and an unevenness of functional skills and symptoms. The paper supports the close relationship between retained primitive reflexes and cognitive and motor function in general and in ASD in particular provided to indicate that the inhibition of RPRs can effect positive change in ASD.
Collapse
Affiliation(s)
- Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of the Medical Sciences of Havana, Havana, Cuba
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | - Yanin Machado-Ferrer
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | | | - Shanine Kamgang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ty Melillo
- Northeast College of the Health Sciences, Seneca Falls, New York, NY, United States
| | - Eli Carmeli
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Ali MT, ElNakieb Y, Elnakib A, Shalaby A, Mahmoud A, Ghazal M, Yousaf J, Abu Khalifeh H, Casanova M, Barnes G, El-Baz A. The Role of Structure MRI in Diagnosing Autism. Diagnostics (Basel) 2022; 12:165. [PMID: 35054330 PMCID: PMC8774643 DOI: 10.3390/diagnostics12010165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
This study proposes a Computer-Aided Diagnostic (CAD) system to diagnose subjects with autism spectrum disorder (ASD). The CAD system identifies morphological anomalies within the brain regions of ASD subjects. Cortical features are scored according to their contribution in diagnosing a subject to be ASD or typically developed (TD) based on a trained machine-learning (ML) model. This approach opens the hope for developing a new CAD system for early personalized diagnosis of ASD. We propose a framework to extract the cerebral cortex from structural MRI as well as identifying the altered areas in the cerebral cortex. This framework consists of the following five main steps: (i) extraction of cerebral cortex from structural MRI; (ii) cortical parcellation to a standard atlas; (iii) identifying ASD associated cortical markers; (iv) adjusting feature values according to sex and age; (v) building tailored neuro-atlases to identify ASD; and (vi) artificial neural networks (NN) are trained to classify ASD. The system is tested on the Autism Brain Imaging Data Exchange (ABIDE I) sites achieving an average balanced accuracy score of 97±2%. This paper demonstrates the ability to develop an objective CAD system using structure MRI and tailored neuro-atlases describing specific developmental patterns of the brain in autism.
Collapse
Affiliation(s)
- Mohamed T. Ali
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ahmed Shalaby
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Mohammed Ghazal
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Jawad Yousaf
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Hadil Abu Khalifeh
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Manuel Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC 29425, USA;
| | - Gregory Barnes
- Department of Neurology, Norton Children’s Autism Center, University of Louisville, Louisville, KY 40208, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| |
Collapse
|
13
|
Ning Y, Zheng S, Feng S, Zhang B, Jia H. Potential Locations for Non-Invasive Brain Stimulation in Treating Schizophrenia: A Resting-State Functional Connectivity Analysis. Front Neurol 2022; 12:766736. [PMID: 34975725 PMCID: PMC8715096 DOI: 10.3389/fneur.2021.766736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Non-invasive brain stimulation (NIBS) techniques have been widely used for the purpose of improving clinical symptoms of schizophrenia. However, the ambiguous stimulation targets may limit the efficacy of NIBS for schizophrenia. Exploring effective stimulation targets may improve the clinical efficacy of NIBS in schizophrenia. Methods: We first conducted a neurosynth-based meta-analysis of 715 functional magnetic resonance imaging studies to identify schizophrenia-related brain regions as regions of interest. Then, we performed the resting-state functional connectivity analysis in 32 patients with first-episode schizophrenia to find brain surface regions correlated with the regions of interest in three pipelines. Finally, the 10–20 system coordinates corresponding to the brain surface regions were considered as potential targets for NIBS. Results: We identified several potential targets of NIBS, including the bilateral dorsal lateral prefrontal cortex, supplementary motor area, bilateral inferior parietal lobule, temporal pole, medial prefrontal cortex, precuneus, superior and middle temporal gyrus, and superior and middle occipital gyrus. Notably, the 10-20 system location of the bilateral dorsal lateral prefrontal cortex was posterior to F3 (F4), not F3 (F4). Conclusion: Conclusively, our findings suggested that the stimulation locations corresponding to these potential targets might help clinicians optimize the application of NIBS therapy in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Binlong Zhang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Cao J, Huang Y, Hodges SA, Meshberg N, Kong J. Identify potential neuroimaging-based scalp acupuncture and neuromodulation targets for anxiety. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anxiety is a common psychiatric symptom with unsatisfactory treatment. Scalp acupuncture is a new type of acupuncture based on the functions of different brain regions. However, recent brain neuroimaging findings have not been well-integrated into scalp acupuncture practice and research since it was developed. In parallel, recently developed brain stimulation methods have also been applied to treat anxiety. In this study, we integrated meta-analysis (using Neurosynth), resting-state functional connectivity, and diffusion tensor imaging (using the amygdala as the region of interest) to identify potential locations of scalp acupuncture/neuromodulation for anxiety. We found that the superior/middle frontal gyrus, middle/superior temporal gyrus, precentral gyrus, supplementary motor area, supramarginal gyrus, angular gyrus, and superior/inferior occipital gyrus are involved in the pathophysiology of anxiety, and, thus, may be used as the target areas of scalp stimulation for alleviating anxiety. Integrating multidisciplinary brain methods to identify key surface cortical areas associated with a certain disorder may shed light on the development of scalp acupuncture/neuromodulation, particularly in the domain of identifying stimulation locations.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
| | - Sierra A. Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
| | - Nathaniel Meshberg
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
| |
Collapse
|
15
|
Cao J, Chai-Zhang TC, Huang Y, Eshel MN, Kong J. Potential scalp stimulation targets for mental disorders: evidence from neuroimaging studies. J Transl Med 2021; 19:343. [PMID: 34376209 PMCID: PMC8353731 DOI: 10.1186/s12967-021-02993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Mental disorders widely contribute to the modern global disease burden, creating a significant need for improvement of treatments. Scalp stimulation methods (such as scalp acupuncture and transcranial electrical stimulation) have shown promising results in relieving psychiatric symptoms. However, neuroimaging findings haven’t been well-integrated into scalp stimulation treatments. Identifying surface brain regions associated with mental disorders would expand target selection and the potential for these interventions as treatments for mental disorders. In this study, we performed large-scale meta-analyses separately on eight common mental disorders: attention deficit hyperactivity disorder, anxiety disorder, autism spectrum disorder, bipolar disorder, compulsive disorder, major depression, post-traumatic stress disorder and schizophrenia; utilizing modern neuroimaging literature to summarize disorder-associated surface brain regions, and proposed neuroimaging-based target protocols. We found that the medial frontal gyrus, the supplementary motor area, and the dorsal lateral prefrontal cortex are commonly involved in the pathophysiology of mental disorders. The target protocols we proposed may provide new brain targets for scalp stimulation in the treatment of mental disorders, and facilitate its clinical application.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Thalia Celeste Chai-Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Maya Nicole Eshel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
16
|
Transcranial Direct Current Stimulation (tDCS) over the Left Dorsal Lateral Prefrontal Cortex in Children with Autism Spectrum Disorder (ASD). Neural Plast 2021; 2021:6627507. [PMID: 34257640 PMCID: PMC8245257 DOI: 10.1155/2021/6627507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, transcranial direct current stimulation (tDCS) has been applied to relieve symptoms in individuals with autism spectrum disorder (ASD). In this prospective, parallel, single-blinded, randomized study, we investigate the modulation effect of three-week tDCS treatment at the left dorsal lateral prefrontal cortex (DLPFC) in children with ASD. 47 children with ASD were enrolled, and 40 (20 in each group) completed the study. The primary outcomes are Childhood Autism Rating Scale (CARS), Aberrant Behavior Checklist (ABC), and the Repetitive Behavior Scale-Revised (RBS-R). We found that children with ASD can tolerate three-week tDCS treatment with no serious adverse events detected. A within-group comparison showed that real tDCS, but not sham tDCS, can significantly reduce the scores of CARS, Children's Sleep Habits Questionnaire (CSHQ), and general impressions in CARS (15th item). Real tDCS produced significant score reduction in the CSHQ and in CARS general impressions when compared to the effects of sham tDCS. The pilot study suggests that three-week left DLPFC tDCS is well-tolerated and may hold potential in relieving some symptoms in children with ASD.
Collapse
|
17
|
Luckhardt C, Boxhoorn S, Schütz M, Fann N, Freitag CM. Brain stimulation by tDCS as treatment option in Autism Spectrum Disorder-A systematic literature review. PROGRESS IN BRAIN RESEARCH 2021; 264:233-257. [PMID: 34167658 DOI: 10.1016/bs.pbr.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and interaction as well as stereotypical and repetitive behavior. Transcranial direct current stimulation (tDCS) has been proposed as a new intervention method in ASD with the potential to improve cognitive, motor and social communication abilities by targeting specific underlying neuronal alterations. Here, we report results of a systematic literature review on tDCS effects on EEG and behavioral outcomes, and discuss tDCS as treatment option for ASD. PsychInfo, PubMed, ScienceDirect, Web of Science, https://clinicaltrials.gov and the German Clinical Trials Register (Deutsches Register Klinischer Studien) were searched systematically for randomized, sham-controlled clinical trials of tDCS in individuals with ASD, and information regarding study designs and relevant results was extracted. Six eligible studies were identified. The dorsolateral prefrontal cortex (DLPFC) was targeted in four trials, with core ASD symptoms and working memory as outcome measures. One study targeted the primary motor cortex (M1) with motor skills as outcome, and one study targeted the temporoparietal junction (TPJ) with social communication skills as outcome measure. Comparison of the implemented study designs showed high methodological variability between studies regarding stimulation parameters, trial design and outcome measures. Study results indicate initial support for improved cognitive and social communication skills in ASD following tDCS stimulation. However, systematic and comparison studies on the best combination of stimulation intensity, duration, location as well as task related stimulation are necessary, before results can be translated into routine clinical application.
Collapse
Affiliation(s)
- Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Sara Boxhoorn
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Magdalena Schütz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nikola Fann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
18
|
Abstract
Background: Healing is a complicated process that can have several components including the self-healing properties of the body, the nonspecific effects of treatment (e.g., the power of the mind), and the specific effects of an intervention. This article first discusses the brain imaging studies on placebo acupuncture analgesia and the modulation effects of expectancy on real acupuncture in healthy subjects. Then, it introduces some attempts to translate findings from healthy subjects to patient population using power of the mind as a way to enhance acupuncture's treatment effects on chronic pain. After that, a new alternative method which merges acupuncture and imagery, while also drawing on power of the mind, is presented. Finally, the specific effects of acupuncture are discussed. Conclusions: Elucidating the mechanism underlying power of the mind would provide new opportunities for boosting the therapeutic effect of acupuncture treatment and furthering the development of new alternative interventions.
Collapse
Affiliation(s)
- Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Maya Nicole Eshel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
19
|
Cao J, Huang Y, Meshberg N, Hodges SA, Kong J. Neuroimaging-Based Scalp Acupuncture Locations for Dementia. J Clin Med 2020; 9:E2477. [PMID: 32752265 PMCID: PMC7463942 DOI: 10.3390/jcm9082477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Scalp acupuncture is a modality of acupuncture in which acupuncture needles are inserted into a certain layer of the scalp in order to affect the function of corresponding areas of the cerebral cortex and relieve symptoms. Clinical studies have demonstrated the potential of scalp acupuncture as a non-pharmacological treatment for dementia. Unfortunately, recent findings from brain neuroimaging studies on dementia have not been incorporated into scalp acupuncture. This study aims to integrate meta-analysis, resting-state functional connectivity, and diffusion tensor imaging (DTI) to identify potential locations of scalp acupuncture for treatment of dementia. We found that the prefrontal cortex, the medial prefrontal cortex, the middle and superior temporal gyrus, the temporal pole, the supplementary motor area, the inferior occipital gyrus, and the precuneus are involved in the pathophysiology of dementia and, therefore, may be the target areas of scalp acupuncture for dementia treatment. The neuroimaging-based scalp acupuncture protocol developed in this study may help to refine the locations for the treatment of dementia. Integrating multidisciplinary methods to identify key surface cortical areas associated with a certain disorder may shed light on the development of scalp acupuncture and other neuromodulation methods such as transcranial electrical current stimulation, particularly in the domain of identifying stimulation locations.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd AVE, Charlestown, MA 02129, USA
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd AVE, Charlestown, MA 02129, USA
| | - Nathaniel Meshberg
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd AVE, Charlestown, MA 02129, USA
| | - Sierra A Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd AVE, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd AVE, Charlestown, MA 02129, USA
| |
Collapse
|