1
|
Grigore M, Ruscu MA, Hermann DM, Colita IC, Doeppner TR, Glavan D, Popa-Wagner A. Biomarkers of cognitive and memory decline in psychotropic drug users. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02837-4. [PMID: 39377784 DOI: 10.1007/s00702-024-02837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Psychotropic drugs are vital in psychiatry, aiding in the management of mental health disorders. Their use requires an understanding of their pharmacological properties, therapeutic applications, and potential side effects. Ongoing research aims to improve their efficacy and safety. Biomarkers play a crucial role in understanding and predicting memory decline in psychotropic drug users. A comprehensive understanding of biomarkers, including neuroimaging, biochemical, genetic, and cognitive assessments, is essential for developing targeted interventions and preventive strategies. In this narrative review, we performed a comprehensive search on PubMed and Google using review-specific terms. Clinicians should use a multifaceted approach, including neurotransmitter analysis, neurotrophic factors, miRNA profiling, and cognitive tasks for early intervention and personalized treatment. Anxiolytics' mechanisms involve various neurotransmitter systems and emerging targets. Research on biomarkers for memory decline in anxiolytic users can lead to early detection and intervention, enhancing clinical practices and aligning with precision medicine. Mood stabilizer users can benefit from early detection of memory decline through RNA, neurophysiological, and inflammatory biomarkers, promoting timely interventions. Performance-enhancing drugs may boost athletic performance in the short term, but their long-term health risks and ethical issues make their use problematic. Long-term use of psychotropic performance enhancers in athletes shows changes in biomarkers of cognitive decline, necessitating ongoing monitoring and intervention strategies. Understanding these genetic influences on memory decline helps pave the way for personalized approaches to prevent or mitigate cognitive deterioration, emphasizing the importance of genetic screening and early interventions based on an individual's genetic profile. Future research should focus on refining these biomarkers and protective measures against cognitive deterioration. Overall, a comprehensive understanding of biomarkers in psychotropic drug users is essential for developing targeted interventions and preventive strategies.
Collapse
Affiliation(s)
- Monica Grigore
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Petru Rares 2-4, 200349, Romania, Craiova
| | - Mihai Andrei Ruscu
- Doctoral School, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, 45147, Essen, Germany
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ivan-Cezar Colita
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Thorsten Roland Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Petru Rares 2-4, 200349, Romania, Craiova.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
2
|
Kutzler J, Polettini AE, Bleicher S, Sauer C, Schultis W, Neukamm MA, Auwärter V. Synthetic cannabinoids in hair-Prevalence of use in abstinence control programs for driver's license regranting in Germany. Drug Test Anal 2024; 16:518-531. [PMID: 37731292 DOI: 10.1002/dta.3578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Although the use, structural variety, and prevalence of synthetic cannabinoids (SCs) have steadily increased on the drug market, they are rarely analyzed in abstinence control programs for driver's license regranting. The aim of this study was to determine the SC prevalence in these programs by analyzing hair samples collected between March 2020 and March 2021 from various regions in Germany, mainly Bavaria (40%). Specimens were analyzed quantitatively for drugs of abuse and qualitatively for 107 SCs. Hair samples were screened by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and to search for unknown SC analogs, positive samples were additionally screened by liquid chromatography-high resolution time of flight mass spectrometry (LC-qTOF/MS). The analysis of 5097 hair samples resulted in 181 SC detections (3.6%), showing a wide range of 44 SCs, with up to 13 different compounds found in a single sample. The most prevalent compounds were 5F-MDMB-PICA and MDMB-4en-PINACA; furthermore, 10 new substances not initially covered by LC-MS/MS analysis were detected by LC-qTOF/MS. The SC positivity rate was comparable to cocaine (5.4%) and amphetamine (2.6%). Only in 35 cases (0.7%), SC analysis was requested by the clients, highlighting the insufficient coverage of SC consumption in the studied collective. In summary, hair sample analysis proved to be a valuable tool to monitor the use of SCs. In order to keep pace with newly emerging SC analogs, an up-to-date analytical method is essential. Prospectively, SCs should be more routinely screened in hair analysis for abstinence control to avoid cannabis substitution by SCs.
Collapse
Affiliation(s)
- Johannes Kutzler
- Department of Forensic Toxicology & Drug Analysis, SYNLAB MVZ Weiden GmbH, Weiden, Germany
- Institute of Forensic Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Postgraduate Course for Toxicology and Environmental Toxicology, Institute for Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Aldo Eliano Polettini
- Department of Forensic Toxicology & Drug Analysis, SYNLAB MVZ Weiden GmbH, Weiden, Germany
- Department of Diagnostics & Public Health, University of Verona, Verona, Italy
| | - Sergej Bleicher
- Department of Forensic Toxicology & Drug Analysis, SYNLAB MVZ Weiden GmbH, Weiden, Germany
| | - Christoph Sauer
- Department of Forensic Toxicology & Drug Analysis, SYNLAB MVZ Weiden GmbH, Weiden, Germany
| | - Wolfgang Schultis
- Department of Forensic Toxicology & Drug Analysis, SYNLAB MVZ Weiden GmbH, Weiden, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Stanciu GD, Ababei DC, Solcan C, Uritu CM, Craciun VC, Pricope CV, Szilagyi A, Tamba BI. Exploring Cannabinoids with Enhanced Binding Affinity for Targeting the Expanded Endocannabinoid System: A Promising Therapeutic Strategy for Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2024; 17:530. [PMID: 38675490 PMCID: PMC11053678 DOI: 10.3390/ph17040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite decades of rigorous research and numerous clinical trials, Alzheimer's disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory role in different physiological processes, such as neuroprotection, modulation of inflammation, and synaptic plasticity. This aligns with previous research showing that cannabinoid receptor ligands have the potential to trigger the functional structure of neuronal and brain networks, potentially impacting memory processing. Therefore, our study aims to assess the effects of prolonged, intermittent exposure (over 90 days) to JWH-133 (0.2 mg/kg) and an EU-GMP certified Cannabis sativa L. (Cannabixir® Medium Flos, 2.5 mg/kg) on recognition memory, as well as their influence on brain metabolism and modulation of the expanded endocannabinoid system in APP/PS1 mice. Chronic therapy with cannabinoid receptor ligands resulted in reduced anxiety-like behavior and partially reversed the cognitive deficits. Additionally, a reduction was observed in both the number and size of Aβ plaque deposits, along with decreased cerebral glucose metabolism, as well as a decline in the expression of mTOR and CB2 receptors. Furthermore, the study revealed enlarged astrocytes and enhanced expression of M1 mAChR in mice subjected to cannabinoid treatment. Our findings highlight the pivotal involvement of the extended endocannabinoid system in cognitive decline and pathological aspects associated with AD, presenting essential preclinical evidence to support the continued exploration and assessment of cannabinoid receptor ligands for AD treatment.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Cristina-Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Vlad-Constantin Craciun
- Department of Computer Science, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania;
| | - Cosmin-Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Alzu'bi A, Almahasneh F, Khasawneh R, Abu-El-Rub E, Baker WB, Al-Zoubi RM. The synthetic cannabinoids menace: a review of health risks and toxicity. Eur J Med Res 2024; 29:49. [PMID: 38216984 PMCID: PMC10785485 DOI: 10.1186/s40001-023-01443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 01/14/2024] Open
Abstract
Synthetic cannabinoids (SCs) are chemically classified as psychoactive substances that target the endocannabinoid system in many body organs. SCs can initiate pathophysiological changes in many tissues which can be severe enough to damage the normal functionality of our body systems. The majority of SCs-related side effects are mediated by activating Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R). The activation of these receptors can enkindle many downstream signalling pathways, including oxidative stress, inflammation, and apoptosis that ultimately can produce deleterious changes in many organs. Besides activating the cannabinoid receptors, SCs can act on non-cannabinoid targets, such as the orphan G protein receptors GPR55 and GPR18, the Peroxisome Proliferator-activated Receptors (PPARs), and the Transient receptor potential vanilloid 1 (TRPV1), which are broadly expressed in the brain and the heart and their activation mediates many pharmacological effects of SCs. In this review, we shed light on the multisystem complications found in SCs abusers, particularly discussing their neurologic, cardiovascular, renal, and hepatic effects, as well as highlighting the mechanisms that intermediate SCs-related pharmacological and toxicological consequences to provide comprehensive understanding of their short and long-term systemic effects.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan.
| | - Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ramada Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Worood Bani Baker
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation & Men'S Health, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
5
|
Chronic exposure to a synthetic cannabinoid alters cerebral brain metabolism and causes long-lasting behavioral deficits in adult mice. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02607-8. [PMID: 36853560 PMCID: PMC10374737 DOI: 10.1007/s00702-023-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
In recent years, there has been growing evidence that cannabinoids have promising medicinal and pharmacological effects. However, the growing interest in medical cannabis highlights the need to better understand brain alterations linking phytocannabinoids or synthetic cannabinoids to clinical and behavioral phenotypes. Therefore, the aim of this study was to investigate the effects of long-term WIN 55,212-2 treatment-with and without prolonged abstinence-on cerebral metabolism and memory function in healthy wildtype mice. Adult C57BI/6J mice were divided into two treatment groups to study the acute effects of WIN 55,212-2 treatment as well the effects of WIN 55,212-2 treatment after an extended washout phase. We could demonstrate that 3 mg/kg WIN 55,212-2 treatment in early adulthood leads to a hypometabolism in several brain regions including the hippocampus, cerebellum, amygdala and midbrain, even after prolonged abstinence. Furthermore, prolonged acute WIN 55,212-2 treatment in 6-months-old mice reduced the glucose metabolism in the hippocampus and midbrain. In addition, Win 55,212-2 treatment during adulthood lead to spatial memory and recognition memory deficits without affecting anxiety behavior. Overall we could demonstrate that treatment with the synthetic CB1/CB2 receptor aganist Win 55,212-2 during adulthood causes persistent memory deficits, especially when mice were treated in early adulthood. Our findings highlight the risks of prolonged WIN 55,212-2 use and provide new insights into the mechanisms underlying the effects of chronic cannabinoid exposure on the brain and behavior.
Collapse
|
6
|
Wilson CD, Hiranita T, Fantegrossi WE. Cannabimimetic effects of abused indazole-carboxamide synthetic cannabinoid receptor agonists AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA in mice: Tolerance, dependence and withdrawal. Drug Alcohol Depend 2022; 236:109468. [PMID: 35643039 DOI: 10.1016/j.drugalcdep.2022.109468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chronic abuse of synthetic cannabinoid receptor agonists (SCRAs), known as "K2″ or "Spice", threatens public health and safety. Recently, SCRAs of the indazole-carboxamide structural class have become more prevalent. Preclinical studies investigating the tolerance and dependence potentially involved in chronic SCRA abuse is limited. The present study determined the in vivo effects of chronic exposure to indazole-carboxamide SCRAs, AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA compared to the first-generation SCRA, JWH-018. METHODS Adult male C57Bl/6 mice were used for dose-effect determinations of hypothermic effects. Adult male NIH Swiss mice were used in biotelemetry studies to assess tolerance to hypothermic effects following repeated SCRA administration over 5 consecutive days, and to determine the role of Phase I drug metabolism via acute CYP450 inhibition in the presence of 1-ABT, a nonspecific CYP450 inhibitor. SCRA dependence was determined in adult male NIH Swiss mice via assessment of rimonabant-precipitated observable sign of withdrawal (i.e., front paw tremors). RESULTS All SCRAs elicited dose-dependent hypothermia mediated through cannabinoid CB1 receptors (CB1Rs). 1-ABT increased duration of hypothermia for all SCRAs tested, and increased the magnitude of hypothermia for all SCRAs except 5F-ADB-PINACA. Upon repeated administration, tolerance to hypothermic effects of AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA was much less than that of JWH-018. Similarly, rimonabant-precipitated front paw tremors were much less frequent in mice treated with 5F-AB-PINACA and 5F-ADB-PINACA than in mice treated with JWH-018. CONCLUSIONS These findings suggest a decreased potential for tolerance and withdrawal among indazole-carboxamide SCRAs, and may imply structural class-dependent profiles of in vivo effects among SCRAs.
Collapse
Affiliation(s)
- Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Santangelo O, Baldwin JM, Stogner J. Does cannabis testing in the military drive synthetic cannabinoid use? Self-reported use motivations among justice-involved veterans. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2022; 106:103756. [PMID: 35738030 DOI: 10.1016/j.drugpo.2022.103756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Though synthetic cannabinoid receptor agonists (SCRAs) were controlled after being introduced as a 'legal high,' SCRAs likely remain appealing to individuals subject to routine drug screens as not all testing programs consistently include SCRAs. Military populations have been linked to SCRAs due to the unconfirmed supposition that testing protocols led many to substitute SCRAs for cannabis. This study aimed to explore SCRA use prevalence, correlates, and use motivations among veterans, with a particular focus on whether United States military personnel substituted SCRAs for cannabis to subvert testing protocols. METHODS All veterans appearing in one of eight civilian criminal courts in three U.S. states were invited to answer questionnaire items related to military service, court functionality, and substance use. Of the 579 veterans eligible, 54.9% chose to participate, yielding a cross-sectional sample of 318 veterans charged with a criminal offense by civilian authorities. RESULTS Sixty-five (21.3%) justice-involved veterans reported lifetime SCRA use. Use while within the military was reported by 15.0% of veterans enlisting after 2008. Only eight (12.3%) reported SCRAs were used as a substitute for cannabis. Boredom (36.9%), experimentation (27.7%), and social aspects of SCRA use (32.3%) were more commonly reported motives. Logistic regression models indicated that use of cannabis (aPR=2.06, p<.05), hallucinogens (aPR=2.50, p<.01), and SCRAs (aPR=2.49, p<.05) while in the military were risk factors for SCRA use after leaving the military, whereas older age at time of military exist was a protective factor (aPR=.87, p<.01) CONCLUSIONS: Drug testing programs within the military do not appear to have the unintended consequence of routing individuals to more risky drugs; however, SCRAs appear to have been an underappreciated problem within the military. Further, use extends beyond the military with many only initiating use after discharge, suggesting SCRA use may jeopardize the health of veterans post-service.
Collapse
Affiliation(s)
- Orion Santangelo
- Department of Criminal Justice and Criminology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001, United States; Loss Prevention Research Council, 747 SW 2nd Ave, Gainesville, FL 32601, United States
| | - Julie Marie Baldwin
- Department of Justice, Law & Criminology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016-8043, United States
| | - John Stogner
- Department of Criminal Justice and Criminology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001, United States.
| |
Collapse
|
8
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
9
|
Orazietti V, Basile G, Giorgetti R, Giorgetti A. Effects of synthetic cannabinoids on psychomotor, sensory and cognitive functions relevant for safe driving. Front Psychiatry 2022; 13:998828. [PMID: 36226105 PMCID: PMC9548613 DOI: 10.3389/fpsyt.2022.998828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Recreational use of Synthetic Cannabinoids (SCs), one of the largest groups of New Psychoactive Substances (NPS), has increased globally over the past few years. Driving is a structured process requiring the cooperation of several cognitive and psychomotor functions, organized in different levels of complexity. Each of these functions can be affected when Driving Under the Influence (DUI) of SCs. In order to reduce the likelihood of SC-related road accidents, it is essential to understand which areas of psychomotor performance are most affected by these substances, as well as the severity of impairment. For this purpose, a multiple database- literature review of recent experimental studies in humans and animals regarding the psychomotor effects of SCs has been performed. Despite the many limitations connected to experimental studies on humans, results showed a consistency between animal and human data. SCs appear to impair psychomotor performance in humans, affecting different domains related to safe driving even at low doses. Cases of DUI of SC have been repeatedly reported, although the exact prevalence is likely to be underestimated due to current analytical and interpretative issues. For this reason, an accurate physical examination performed by trained and experienced personnel has a primary role in recognizing signs of impairment in case of strong suspicion of SC consumption. The identification of a suspected case should be followed by reliable laboratory examination.
Collapse
Affiliation(s)
- Vasco Orazietti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Giuseppe Basile
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Galeazzi Orthopedics Institute, Milan, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Arianna Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy.,Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Markin PA, Brito A, Moskaleva NE, Tagliaro F, La Frano MR, Savitskii MV, Appolonova SA. Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryotoxicity confirmed by teratogenicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:109000. [PMID: 33561556 DOI: 10.1016/j.cbpc.2021.109000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Synthetic cannabinoids are abused substances with strong psychoactive effects. Little is known about the effects on neurotransmission and the toxicity of the second-generation cannabinoid 5F-APINAC. The objective was to assess the influence of short- and long-term exposures of 5F-APINAC on metabolites associated with neurotransmission on zebrafish. METHODS Short-term ("acute", 4 h) and long-term ("chronic", 96 h) exposures to 5F-APINAC were performed at 0.001, 0.01, 0.1, 1.0 and 10 μM. Intervention groups were compared with a vehicle control. Each group n = 20 zebrafish eggs/larvae. Metabolites related to neurotransmission were determined. RESULTS In chronic exposure, larvae exposed to 10 μM 5F-APINAC presented morphological and developmental alterations. GABA had the lowest concentrations at higher exposure in acute (p < 0.01) and chronic (p < 0.001) experiments. Glutamine showed a descending trend in the acute experiment, but an ascending trend in the chronic exposure (p < 0.05). In chronic exposure, tryptophan presented an overall descending trend, but with a neat increase at 10 μM 5F-APINAC (p < 0.001). Tryptamine in acute exposure presented lower (p < 0.05) concentrations at higher doses. Dopamine and acetylcholine presented highest (p < 0.05) concentrations in the acute and chronic exposures, but with a drop at the highest doses in the chronic experiments. In chronic exposure, xanthurenic acid decreased, except for the highest dose. Picolinic acid was increased at the highest doses in the chronic experiment (p < 0.001). CONCLUSIONS Short- and long-term exposures induced metabolomic alterations associated with the gamma-aminobutyric acid/glutamic acid, dopaminergic/adrenergic, cholinergic neurotransmitter systems, and the kynurenine pathway. Chronic exposure at 10 μM 5F-APINAC was associated with embryotoxicity confirmed by teratogenesis.
Collapse
Affiliation(s)
- Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy; I.M. Sechenov First Moscow State Medical University, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital biodesign and personalized healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Russia
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
11
|
Feingold D, Hoch E, Weinstein A, Hall W. Editorial: Psychological Aspects of Cannabis Use and Cannabis Use Disorder. Front Psychiatry 2021; 12:789197. [PMID: 34803784 PMCID: PMC8602183 DOI: 10.3389/fpsyt.2021.789197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Eva Hoch
- Clinic and Policlinic of Psychiatry and Psychotherapy, Clinic of Ludwig-Maximilian-University, Munich, Germany.,Division of Clinical Psychology and Psychological Treatment, Department of Psychology, Ludwig-Maximilian-University, Munich, Germany
| | - Aviv Weinstein
- Department of Psychology, Ariel University, Ariel, Israel
| | - Wayne Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Stogner J, Miller BL. Exploring the Relationships between Sexual Orientation and Gender Identity and Youth Synthetic Cannabinoid Use. Subst Use Misuse 2021; 56:327-332. [PMID: 33353471 DOI: 10.1080/10826084.2020.1858105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose: Existing studies have identified sexual minorities as being at enhanced risk for reporting synthetic cannabinoid (SC) use. It is unclear whether this association is the result of those that identify as a minority due to sexual orientation being more likely to use SCs, due to those that identify as transgender using SCs more, or both. Deconstructing this relationship will allow for targeted clinical advice and public health campaigns. Methods: Data from the 2015 and 2017 Youth Risk Behavior Study are utilized. In total, 31,279 youth were asked about their gender identity, sexual orientation, and SC use history. Bivariate analyses and logistic regression models were completed to explore relevant associations. Results: Identifying as lesbian, gay, bisexual, or questioning was linked to SC use and continuing SC use. Similarly, identifying as transgender was linked to SC use and continuing use. Regression analyses showed no significant interactive effect; identifying as both LGBQ and transgender does not have a compounding effect on use likelihood. Conclusions: Both sexual orientation and gender identity contribute to the relationship between sexual minority status and SC use noted in extant literature. This relationship is hypothesized to be tied to increased exposure to discrimination, victimization, and social isolation. Thus, efforts to directly counsel LGBTQ patients about the dangers associated with SC use are warranted as well as social policy reforms to better protect and support members of the LGBTQ community.
Collapse
Affiliation(s)
- John Stogner
- Criminal Justice and Criminology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | | |
Collapse
|
13
|
Brunt TM, Bossong MG. The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci 2020; 55:909-921. [PMID: 32974975 PMCID: PMC9291836 DOI: 10.1111/ejn.14982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system is a complex neuronal system involved in a number of biological functions, like attention, anxiety, mood, memory, appetite, reward, and immune responses. It is at the centre of scientific interest, which is driven by therapeutic promise of certain cannabinoid ligands and the changing legalization of herbal cannabis in many countries. The endocannabinoid system is a modulatory system, with endocannabinoids as retrograde neurotransmitters rather than direct neurotransmitters. Neuropharmacology of cannabinoid ligands in the brain can therefore be understood in terms of their modulatory actions through other neurotransmitter systems. The CB1 receptor is chiefly responsible for effects of endocannabinoids and analogous ligands in the brain. An overview of the neuropharmacology of several cannabinoid receptor ligands, including endocannabinoids, herbal cannabis and synthetic cannabinoid receptor ligands is given in this review. Their mechanism of action at the endocannabinoid system is described, mainly in the brain. In addition, effects of cannabinoid ligands on other neurotransmitter systems will also be described, such as dopamine, serotonin, glutamate, noradrenaline, opioid, and GABA. In light of this, therapeutic potential and adverse effects of cannabinoid receptor ligands will also be discussed.
Collapse
Affiliation(s)
- Tibor M. Brunt
- Department of Psychiatry Amsterdam Institute for Addiction ResearchAmsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Matthijs G. Bossong
- Department of Psychiatry University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| |
Collapse
|