1
|
Kazemian N, Pakpour S. Understanding the impact of the gut microbiome on opioid use disorder: Pathways, mechanisms, and treatment insights. Microb Biotechnol 2024; 17:e70030. [PMID: 39388360 PMCID: PMC11466222 DOI: 10.1111/1751-7915.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread use of opioids for chronic pain management not only poses a significant public health issue but also contributes to the risk of tolerance, dependence, and addiction, leading to opioid use disorder (OUD), which affects millions globally each year. Recent research has highlighted a potential bidirectional relationship between the gut microbiome and OUD. This emerging perspective is critical, especially as the opioid epidemic intensifies, emphasizing the need to investigate how OUD may alter gut microbiome dynamics and vice versa. Understanding these interactions could reveal new insights into the mechanisms of addiction and tolerance, as well as provide novel approaches for managing and potentially mitigating OUD impacts. This comprehensive review explores the intricate bidirectional link through the gut-brain axis, focusing on how opiates influence microbial composition, functional changes, and gut mucosal integrity. By synthesizing current findings, the review aims to inspire new strategies to combat the opioid crisis and leverage microbiome-centred interventions for preventing and treating OUD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Sepideh Pakpour
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
2
|
Barkus A, Baltrūnienė V, Baušienė J, Baltrūnas T, Barkienė L, Kazlauskaitė P, Baušys A. The Gut-Brain Axis in Opioid Use Disorder: Exploring the Bidirectional Influence of Opioids and the Gut Microbiome-A Comprehensive Review. Life (Basel) 2024; 14:1227. [PMID: 39459527 PMCID: PMC11508959 DOI: 10.3390/life14101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid Use Disorder is a chronic condition characterized by compulsive opioid use despite negative consequences, resulting in severe health risks such as overdose and contraction of infectious diseases. High dropout rates in opioid agonist therapy highlight the need for more effective relapse prevention strategies. Animal and clinical studies indicate that opioids influence gut microbiota, which in turn plays a critical role in addiction development and alters behavioral responses to opioids. This study provides a comprehensive review of the literature on the effects of opioids on the gut microbiome and explores the potential of microbiome manipulation as a therapeutic target in opioid addiction.
Collapse
Affiliation(s)
- Artūras Barkus
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vaida Baltrūnienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Justė Baušienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Tomas Baltrūnas
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Lina Barkienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Paulina Kazlauskaitė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Augustinas Baušys
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
3
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
4
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Ren M, Lotfipour S. Antibiotic Knockdown of Gut Bacteria Sex-Dependently Enhances Intravenous Fentanyl Self-Administration in Adult Sprague Dawley Rats. Int J Mol Sci 2022; 24:409. [PMID: 36613853 PMCID: PMC9820294 DOI: 10.3390/ijms24010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Communication between the brain and gut bacteria impacts drug- and addiction-related behaviors. To investigate the role of gut microbiota on fentanyl reinforcement and reward, we depleted gut bacteria in adult Sprague Dawley male and female rats using an oral, nonabsorbable antibiotic cocktail and allowed rats to intravenously self-administer fentanyl on an escalating schedule of reinforcement. We found that antibiotic treatment enhanced fentanyl self-administration in males, but not females, at the lowest schedule of reinforcement (i.e., fixed ratio 1). Both males and females treated with antibiotics self-administered greater amounts of fentanyl at higher schedules of reinforcement. We then replete microbial metabolites via short-chain fatty acid administration to evaluate a potential mechanism in gut-brain communication and found that restoring metabolites decreases fentanyl self-administration back to controls at higher fixed ratio schedules of reinforcement. Our findings highlight an important relationship between the knockdown and rescue of gut bacterial metabolites and fentanyl self-administration in adult rats, which provides support for a significant relationship between the gut microbiome and opioid use. Further work in this field may lead to effective, targeted treatment interventions in opioid-related disorders.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Emergency Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Ji J, Yan N, Zhang Z, Li B, Xue R, Dang Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci Lett 2022; 788:136857. [PMID: 36038030 DOI: 10.1016/j.neulet.2022.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Jinshan Ji
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ni Yan
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Disease Control and Prevention, The Affiliated Ninth Hospital of Xi'an of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Baoli Li
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ruiyang Xue
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Yonghui Dang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
7
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|
8
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
9
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
10
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Effah F, de Gusmão Taveiros Silva NK, Vijayanathan K, Camarini R, Joly F, Taiwo B, Rabot S, Champeil-Potokar G, Bombail V, Bailey A. SEX-DEPENDENT IMPACT OF MICROBIOTA STATUS ON CEREBRAL μ -OPIOID RECEPTOR DENSITY IN FISCHER RATS. Eur J Neurosci 2022; 55:1917-1933. [PMID: 35393704 PMCID: PMC9324823 DOI: 10.1111/ejn.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
μ‐opioid receptors (MOPr) play a critical role in social play, reward and pain, in a sex‐ and age‐dependent manner. There is evidence to suggest that sex and age differences in brain MOPr density may be responsible for this variability; however, little is known about the factors driving these differences in cerebral MOPr density. Emerging evidence highlights gut microbiota's critical influence and its bidirectional interaction with the brain on neurodevelopment. Therefore, we aimed to determine the impact of gut microbiota on MOPr density in male and female brains at different developmental stages. Quantitative [3H]DAMGO autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ‐free (GF) rats at postnatal days (PND) 8, 22 and 116–150. Significant ‘microbiota status X sex’, ‘age X brain region’ interactions and microbiota status‐ and age‐dependent effects on MOPr binding were uncovered. Microbiota status influenced MOPr levels in males but not females, with higher MOPr levels observed in GF versus CON rats overall regions and age groups. In contrast, no overall sex differences were observed in GF or CON rats. Interestingly, within‐age planned comparison analysis conducted in frontal cortical and brain regions associated with reward revealed that this microbiota effect was restricted only to PND22 rats. Thus, this pilot study uncovers the critical sex‐dependent role of gut microbiota in regulating cerebral MOPr density, which is restricted to the sensitive developmental period of weaning. This may have implications in understanding the importance of microbiota during early development on opioid signalling and associated behaviours.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | | | - Katie Vijayanathan
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Rosana Camarini
- Pharmacology Department, Universidade de Sao Paulo, São Paulo, Brazil
| | - Fatima Joly
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Benjamin Taiwo
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Bombail
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| |
Collapse
|
12
|
Herlihy B, Roy S. Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10311. [PMID: 38390617 PMCID: PMC10880781 DOI: 10.3389/adar.2022.10311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 02/24/2024]
Abstract
Substance use disorder (SUD) is a prevalent disease that has caused hundreds of thousands of deaths and affected the lives of even more. Despite its global impact, there is still no known cure for SUD, or the psychological symptoms associated with drug use. Many of the behavioral consequences of drug use prevent people from breaking the cycle of addiction or cause them to relapse back into the cycle due to the physical and psychological consequences of withdrawal. Current research is aimed at understanding the cause of these drug related behaviors and therapeutically targeting them as a mechanism to break the addiction cycle. Research on opioids suggests that the changes in the microbiome during drug use modulated drug related behaviors and preventing these microbial changes could attenuate behavioral symptoms. This review aims to highlight the relationship between the changes in the microbiome and behavior during opioid treatment, as well as highlight the additional research needed to understand the mechanism in which the microbiome modulates behavior to determine the best therapeutic course of action.
Collapse
Affiliation(s)
- Bridget Herlihy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
13
|
Wang Z, Hou C, Chen L, Zhang M, Luo W. Potential roles of the gut microbiota in the manifestations of drug use disorders. Front Psychiatry 2022; 13:1046804. [PMID: 36590616 PMCID: PMC9795867 DOI: 10.3389/fpsyt.2022.1046804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Drug use disorders (DUDs) not only cause serious harm to users but also cause huge economic, security, and public health burdens to families and society. Recently, several studies have shown that gut microbiota (GM) can affect the central nervous system and brain functions. In this review, we focus on the potential role of the GM in the different stages of DUDs. First, the GM may induce individuals to seek novel substances. Second, the gut microbiota is involved in the decomposition and absorption of drugs. Symptoms of individuals who suffer from DUDs are also related to intestinal microorganisms. Third, the effects of the GM and its metabolites on drug relapse are mainly reflected in the reward effect and drug memory. In conclusion, recent studies have preliminarily explored the relationship between GM and DUDs. This review deepens our understanding of the mechanisms of DUDs and provides important information for the future development of clinical treatment for DUDs.
Collapse
Affiliation(s)
- Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Chengqian Hou
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| |
Collapse
|
14
|
Fu X, Chen T, Cai J, Liu B, Zeng Y, Zhang X. The Microbiome-Gut-Brain Axis, a Potential Therapeutic Target for Substance-Related Disorders. Front Microbiol 2021; 12:738401. [PMID: 34690981 PMCID: PMC8526971 DOI: 10.3389/fmicb.2021.738401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Substance addiction is a complex worldwide public health problem. It endangers both personal life and social stability, causing great loss on economy. Substance-related disorder is considered to be a complicated chronic brain disorder. It resulted from interactions among pharmacological properties of addictive substances, individual susceptibility, and social–environmental factors. Unfortunately, there is still no ideal treatment for this disorder. Recent lines of evidence suggest that gut microbiome may play an important role in the pathogenesis of neuropsychiatric disorders, including substance-related disorders. This review summarizes the research on the relationship between gut microbiome and substance-related disorders, including different types of substance, different individual susceptibility, and the occurrence and development of substance-induced mental disorders. We also discuss the potentiation of gut microbiome in the treatment of substance-related disorders, especially in the treatment of substance-induced mental disorders and manipulation on individuals’ responsiveness to addictive substances.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingda Cai
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Bo Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Yaohui Zeng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
15
|
Acute cannabidiol treatment attenuates ethanol-induced place preference and reduces aggressivity in group-housed male rats. Pharmacol Biochem Behav 2021; 211:173290. [PMID: 34662589 DOI: 10.1016/j.pbb.2021.173290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Alcohol abuse is a widespread cause of aggressive and impulsive behaviors that impact the users as well as their entourage. However, only a few medications are effective. Recently, cannabidiol has been reported to improve mood disorders and recovery from substance abuse, yet the psychopharmacologic effects of cannabidiol in ethanol-induced drug reward and aggressivity remain unexplored. In the present study, we investigated the effects of cannabidiol on ethanol-induced place preference and aggressivity in individually and group-housed male rats using the conditioned place preference test, and intruder evoc aggression test, respectively. The obtained results showed that ethanol significantly increased locomotor activity, induced conditioned place preference in all animals, and, specifically, increased aggressivity in individually housed rats. These behavioural impairments induced by ethanol were associated with decreased glucocorticoid and mineralocorticoid receptors transcription in the prefrontal cortex. Notwithstanding, cannabidiol at a dose of 10 mg/kg significantly inhibited Et-OH-induced place preference in group-housed, but not in individually housed rats, and markedly inhibited the aggressive behaviour. These findings suggest that ethanol-induced behavioural impairments are dependent on the housing condition that may affect corticosterone receptors expression and subsequently the animal responsivity to cannabidiol treatment.
Collapse
|
16
|
Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology 2021; 192:108598. [PMID: 33965398 PMCID: PMC8220934 DOI: 10.1016/j.neuropharm.2021.108598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Xue H, Wang B, Meng T, Zhao S, Wang Q, Zhang X, Kang M, Xiang W. Differences of Sleep Disorders Between Vestibular Migraine and Benign Paroxysmal Positional Vertigo. Front Psychiatry 2021; 12:726038. [PMID: 34867516 PMCID: PMC8637153 DOI: 10.3389/fpsyt.2021.726038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction: Sleep disorders can affect the overall health and quality of life of patients. This study was conducted to compare the differences of sleep disorders in vestibular migraine (VM) patients and benign paroxysmal positional vertigo (BPPV) patients. Methods: VM patients, BPPV patients, and healthy controls (HCs) were recruited. Pittsburgh sleep quality index and polysomnography monitoring were used as subjective and objective, respectively, evaluation methods to evaluate the sleep quality of participants in the latest month. Results: Fifty-seven BPPV patients, 48 VM patients, and 42 HCs were included in this study. There were 79.16% VM patients, 54.39% BPPV patients, and 14.28% HCs with sleep disorders. The difference in the incidence rate of sleep disorders was significant between VM patients and BPPV patients (p = 0.008) and significantly higher in both the VM group (p < 0.00001) and BPPV group (p = 0.00004) than in the HC groups (14.28%). Compared with BPPV patients, the VM patients had the significantly lower sleep efficiency (p < 0.001) and N3 (p < 0.001) and the significantly higher time of wake-up after sleep onset (p < 0.001), N1 (p < 0.001), and N2 (p < 0.001). Meanwhile, the VM patients had significantly higher incidence rates of severe obstructive sleep apnea hypoventilation syndrome (p = 0.001) and periodic leg movement in sleep (p = 0.016). Conclusion: The incidence rate of sleep disorders was significantly higher in both VM and BPPV patients than in the HC groups. To improve the curative effects, clinicians should pay more attention to the comorbidity of sleep disorders in treating VM and BPPV.
Collapse
Affiliation(s)
- Hui Xue
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Tianyu Meng
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Qingyin Wang
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Xin Zhang
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Min Kang
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Wenping Xiang
- Department of Neurology, Baotou Central Hospital, Baotou, China
| |
Collapse
|