1
|
Nasir F, Yadav P, Sivanandam TM. NaHS alters synaptic plasticity proteins and enhances dendritic arborization to improve cognitive and motor deficits after traumatic brain injury in mice. Br J Pharmacol 2024. [PMID: 39562524 DOI: 10.1111/bph.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a complex medical condition affecting people globally. Hydrogen sulfide (H2S) is a recently discovered gaseous mediator and is dysregulated in the brain after TBI. Sodium hydrogen sulfide (NaHS), a known donor of H2S, is beneficial in various biological processes involving aging and diseases, including injury. It is neuroprotective against oxidative stress, neuroinflammation, and other secondary injury processes. However, the NaHS-H2S system has not been investigated as a regulator of injury-mediated synaptic plasticity proteins and the underlying mechanisms after TBI. EXPERIMENTAL APPROACH We developed a model of TBI in Swiss albino mice to study the effects of exogenous H2S, administered as NaHS. We assessed cognitive function (Barnes maze and novel object recognition) and motor function (rotarod). Brain tissue was analysed with ELISA, qRT-PCR, immunoblotting, Golgi-cox staining, and immunofluorescence. KEY RESULTS NaHS administration restored the injury-caused decline in H2S levels. Injury-mediated oxidative stress parameters were improved following NaHS. It down-regulated TBI biomarkers, ameliorated the synaptic marker proteins, and improved cognitive and motor deficits. These changes were accompanied by enhanced dendritic arborization and spine number. Restoration of N-methyl D-aspartate receptor subunits and diminished glutamate and calcium levels, along with marked changes in microtubule-associated protein 2 A and calcium/calmodulin-dependent protein kinase II, formed the basis of the underlying mechanism(s). CONCLUSION AND IMPLICATIONS Our findings suggest that NaHS could have therapeutic activity against TBI, as it ameliorated cognitive and motor deficits caused by changes in synaptic plasticity proteins and dendritic arborisation, in our model.
Collapse
Affiliation(s)
- Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Nikolić T, Bogosavljević MV, Stojković T, Kanazir S, Lončarević-Vasiljković N, Radonjić NV, Popić J, Petronijević N. Effects of Antipsychotics on the Hypothalamus-Pituitary-Adrenal Axis in a Phencyclidine Animal Model of Schizophrenia. Cells 2024; 13:1425. [PMID: 39272997 PMCID: PMC11394463 DOI: 10.3390/cells13171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins. The perinatal administration of phencyclidine (PCP) to rodents represents an animal model of SCH. This study investigated the effects of perinatal PCP exposure and subsequent haloperidol/clozapine treatment on corticosterone levels measured by ELISA and the expression of GR-related proteins (GR, pGR, HSP70, HSP90, FKBP51, and 11β-Hydroxysteroid dehydrogenase-11β-HSD) determined by Western blot, in different brain regions of adult rats. Six groups of male rats were treated on the 2nd, 6th, 9th, and 12th postnatal days (PN), with either PCP or saline. Subsequently, one saline and one PCP group received haloperidol/clozapine from PN day 35 to PN day 100. The results showed altered GR sensitivity in the rat brain after PCP exposure, which decreased after haloperidol/clozapine treatment. These findings highlight disturbances in the HPA axis in a PCP-induced model of SCH and the potential protective effects of antipsychotics. To the best of our knowledge, this is the first study to investigate the effects of antipsychotic drugs on the HPA axis in a PCP animal model of SCH.
Collapse
Affiliation(s)
- Tatjana Nikolić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Tihomir Stojković
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- iNOVA4Health, NOVA Medical School|Faculdade Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Nevena V Radonjić
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jelena Popić
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nataša Petronijević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
The Role of OXT, OXTR, AVP, and AVPR1a Gene Expression in the Course of Schizophrenia. Curr Issues Mol Biol 2022; 44:336-349. [PMID: 35723404 PMCID: PMC8929099 DOI: 10.3390/cimb44010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a serious and chronic mental illness, the symptoms of which usually appear for the first time in late adolescence or early adulthood. To date, much research has been conducted on the etiology of schizophrenia; however, it is still not fully understood. Oxytocin and vasopressin as neuromodulators that regulate social and emotional behavior are promising candidates for determining the vulnerability to schizophrenia. The aim of this study was to evaluate the expression of OXT, OXTR, AVP, and AVPR1a genes at the mRNA and protein levels in patients with schizophrenia. Due to the neurodegenerative nature of schizophrenia, the study group was divided into two subgroups, namely, G1 with a diagnosis that was made between 10 and 15 years after the onset of the illness, and G2 with a diagnosis made up to two years after the onset of the illness. Moreover, the relationship between the examined genes and the severity of schizophrenia symptoms, assessed using PANSS (Positive and Negative Syndrome Scale) and CDSS scales (Clinical Depression Scale for Schizophrenia) was evaluated. The analysis of the expression of the studied genes at the mRNA and protein levels showed statistically significant differences in the expression of all the investigated genes. OXT and AVPR1a gene expression at both the mRNA and protein levels were significantly lower in the schizophrenia group, and OXTR and AVP gene expression at both the mRNA and protein levels was higher in the schizophrenia subjects than in the controls. Furthermore, a significant correlation of OXT gene expression at the mRNA and protein levels with the severity of depressive symptoms in schizophrenia as assessed by CDSS was found.
Collapse
|
4
|
Misiak B, Pruessner M, Samochowiec J, Wiśniewski M, Reginia A, Stańczykiewicz B. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front Neuroendocrinol 2021; 62:100930. [PMID: 34171354 DOI: 10.1016/j.yfrne.2021.100930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
Dysregulated cortisol responses and glucose metabolism have been reported in psychosis. We performed a random-effects meta-analysis of cortisol responses in first-episode psychosis (FEP) and psychosis risk states, taking into consideration glucose metabolism. A total of 47 studies were included. Unstimulated blood cortisol levels were significantly higher (g = 0.48, 95 %CI: 0.25-0.70, p < 0.001) in FEP, but not in psychosis risk states (g = 0.39, 95 %CI: -0.42-1.21, p = 0.342), compared to controls. Cortisol awakening response (CAR) was attenuated in FEP (g = -0.40, 95 %CI: -0.68 - -0.12, p = 0.006), but not in psychosis risk states (p = 0.433). Glucose and insulin levels were positively correlated with unstimulated blood cortisol levels in FEP. Our meta-analysis supports previous findings of elevated blood cortisol levels and attenuated CAR in FEP. Future research should focus on identifying the common denominators for alterations in stress hormones and glucose metabolism.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | | | - Artur Reginia
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
5
|
Sershen H, Guidotti A, Auta J, Drnevich J, Grayson DR, Veldic M, Meyers J, Youseff M, Zhubi A, Faurot K, Wu R, Zhao J, Jin H, Lajtha A, Davis JM, Smith RC. Gene Expression Of Methylation Cycle And Related Genes In Lymphocytes And Brain Of Patients With Schizophrenia And Non-Psychotic Controls. Biomark Neuropsychiatry 2021; 5. [PMID: 34368786 DOI: 10.1016/j.bionps.2021.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Some of the biochemical abnormalities underlying schizophrenia, involve differences in methylation and methylating enzymes, as well as other related target genes. We present results of a study of differences in mRNA expression in peripheral blood lymphocytes (PBLs) and post-mortem brains of chronic schizophrenics (CSZ) and non-psychotic controls (NPC), emphasizing the differential effects of sex and antipsychotic drug treatment on mRNA findings. We studied mRNA expression in lymphocytes of 61 CSZ and 49 NPC subjects using qPCR assays with TaqMan probes to assess levels of DNMT, TET, GABAergic, NR3C1, BDNF mRNAs, and several additional targets identified in a recent RNA sequence analysis. In parallel we studied DNMT1 and GAD67 in samples of brain tissues from 19 CSZ, 26 NPC. In PBLs DNMT1 and DNMT3A mRNA levels were significantly higher in male CSZ vs NPC. No significant differences were detected in females. The GAD1, NR3C1 and CNTNAP2 mRNA levels were significantly higher in CSZ than NPC. In CSZ patients treated with clozapine, GAD-1 related, CNTNAP2, and IMPA2 mRNAs were significantly higher than in CSZ subjects not treated with clozapine. Differences between CSZ vs NPC in these mRNAs was primarily attributable to the clozapine treatment. In the brain samples, DNMT1 was significantly higher and GAD67 was significantly lower in CSZ than in NPC, but there were no significant sex differences in diagnostic effects. These findings highlight the importance of considering sex and drug treatment effects in assessing the substantive significance of differences in mRNAs between CSZ and NPC.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - Alessandro Guidotti
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - James Auta
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Jenny Drnevich
- High Performance Biological Computing group and the Roy J. Carver Biotechnology Center University of Illinois, Urbana, USA
| | - Dennis R Grayson
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Jordan Meyers
- Oregon Health and Science University, Portland, Oregon, USA
| | - Mary Youseff
- Harlem Hospital, Department of Psychiatry, New York, NY, US
| | - Adrian Zhubi
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Keturah Faurot
- Department of Physical Medicine & Rehabilitation, University of North Carolina at Chapel Hill, North Carolina
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, and VA San Diego Healthcare System, San Diego, California, USA
| | - Abel Lajtha
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - John M Davis
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| |
Collapse
|