1
|
Tian H, Wang Z, Meng Y, Geng L, Lian H, Shi Z, Zhuang Z, Cai W, He M. Neural mechanisms underlying cognitive impairment in depression and cognitive benefits of exercise intervention. Behav Brain Res 2025; 476:115218. [PMID: 39182624 DOI: 10.1016/j.bbr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Depression is associated with functional brain impairments, although comprehensive studies remain limited. This study reviews neural mechanisms underlying cognitive impairment in depression and identifies associated activation abnormalities in brain regions. The study also explores the underlying neural processes of cognitive benefits of exercise intervention for depression. Executive function impairments, including working memory, inhibitory control and cognitive flexibility are associated with frontal cortex and anterior cingulate areas, especially dorsolateral prefrontal cortex. Depression is associated with certain neural impairments of reward processing, especially orbitofrontal cortex, prefrontal cortex, nucleus accumbens and other striatal regions. Depressed patients exhibit decreased activity in the hippocampus during memory function. Physical exercise has been found to enhance memory function, executive function, and reward processing in depression patients by increasing functional brain regions and the brain-derived neurotrophic factor (BDNF) as a nutritional factor also plays a key role in exercise intervention. The study documents neurophysiological mechanisms behind exercise intervention's improved functions. In summary, the study provides insights into neural mechanisms underlying cognitive impairments in depression and the effectiveness of exercise as a treatment.
Collapse
Affiliation(s)
- Huizi Tian
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhifang Wang
- School of Psychology, Capital Normal University, China
| | - Yao Meng
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, China
| | - Lu Geng
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Hao Lian
- Faculty of Psychology, Naval Medical University, Shanghai, China
| | - Zhifei Shi
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhidong Zhuang
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Wenpeng Cai
- Faculty of Psychology, Naval Medical University, Shanghai, China.
| | - Mengyang He
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China.
| |
Collapse
|
2
|
Li N, Zhang X, Zheng Y, Liu Q, Niu S, Qin Y, Zhang Y, Liu Y, Wang J. The Impact of Perfectionism on the Incidence of Major Depression in Chinese Medical Freshmen: From a 1-Year Longitudinal Study. Psychol Res Behav Manag 2024; 17:4053-4062. [PMID: 39628595 PMCID: PMC11613701 DOI: 10.2147/prbm.s479381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Background Perfectionism is a pivotal factor in the etiology and prognosis of major depression. Nevertheless, there is a scarcity of longitudinal research examining the association between perfectionism and major depressive disorder (MDD). The objective of this study was to explore the impact of perfectionism on MDD among a cohort of first-year Chinese university students. Methods This study employed a longitudinal design to investigate the relationship between perfectionism and MDD in a sample of first-year Chinese university students (n=8079). Socially prescribed perfectionism and almost perfectionism were measured using the Multidimensional Perfectionism Scale (MPS) and the Almost Perfect Scale-Revised (APS-R), while MDD was assessed using the Composite International Diagnostic Interview (CIDI-3.0). Random effects logistic regression modeling was utilized to estimate the associations between the variables. Results The findings revealed that the incidence of MDD was 0.6%. Lifetime exposure to severe traumatic events (≥10) (OR=2.619, 95% CI: 1.502-4.565) and almost perfectionism (OR=1.015, 95% CI: 1.004-1.026) were identified as significant risk factors for MDD. Conclusion It is evident that perfectionism is linked to an increased susceptibility to MDD. However, additional longitudinal studies focusing on university students are imperative to delve deeper into the influence of perfectionism on the initial manifestation of MDD.
Collapse
Affiliation(s)
- Na Li
- School of Mental Health, Jining Medical University, Jining, 272013, People’s Republic of China
| | - Xinyao Zhang
- School of Mental Health, Jining Medical University, Jining, 272013, People’s Republic of China
| | - Yi Zheng
- School of Mental Health, Jining Medical University, Jining, 272013, People’s Republic of China
| | - Qingchuan Liu
- School of Communication, East China Normal University, Shanghai, 200241, People’s Republic of China
| | - Sifang Niu
- School of Public Health, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Yan Qin
- School of Public Health, Shandong First Medical University, Jinan, 250117, People’s Republic of China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yan Liu
- School of Public Health, Jining Medical University, Jining, 272013, People’s Republic of China
| | - Jianli Wang
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, B2N 5E3, Canada
| |
Collapse
|
3
|
Wang YM, Chen LL, Wang CL, Yan C, Xie GR, Yang XH. Changed ventral striatum structural covariance and grey matter volume in depression during a one-year follow-up. Psychiatry Res Neuroimaging 2024; 344:111887. [PMID: 39236484 DOI: 10.1016/j.pscychresns.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Empirical findings suggest reduced cortico-striatal structural connectivity in patients with major depressive disorder (MDD). However, the relationship between the abnormal structural covariance and one-year outcome of first-episode drug-naive patients has not been evaluated. This longitudinal study aimed to identify specific changes of ventral striatum-related brain structural covariance and grey matter volume in forty-two first-episode patients with major depression disorder compared with thirty-seven healthy controls at the baseline and the one-year follow-up conditions. At the baseline, patients showed decreased structural covariance between the left ventral striatum and the bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), right supplementary motor area (SMA) and left precentral gyrus and increased grey matter volume at the left fusiform and left parahippocampus. At the one-year follow-up, patients showed decreased structural covariance between the left ventral striatum and the right SFG, right MFG, left precentral gyrus and left postcentral gyrus, and increased structural covariance between the right ventral striatum and the right amygdala, right hippocampus, right parahippocampus, right superior temporal pole, right insula and right olfactory bulb and decreased volume at the left SMA compared with controls. These findings suggest that specific ventral striatum connectivity changes contribute to the early brain development of the MDD.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Liang-Liang Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Cheng-Lei Wang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guang-Rong Xie
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | - Xin-Hua Yang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Li L, Jiang J, Zhong S, Lin J, Yao Y, Kemp GJ, Chen Y, Gong Q. Transdiagnostic depression severity and its relationship to global and prefrontal-amygdala structural properties in people with major depression and post-traumatic stress disorder. Cereb Cortex 2024; 34:bhae381. [PMID: 39315647 PMCID: PMC11420672 DOI: 10.1093/cercor/bhae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
While some studies have used a transdiagnostic approach to relate depression to metabolic or functional brain alterations, the structural substrate of depression across clinical diagnostic categories is underexplored. In a cross-sectional study of 52 patients with major depressive disorder and 51 with post-traumatic stress disorder, drug-naïve, and spanning mild to severe depression severity, we examined transdiagnostic depressive correlates with regional gray matter volume and the topological properties of gray matter-based networks. Locally, transdiagnostic depression severity correlated positively with gray matter volume in the right middle frontal gyrus and negatively with nodal topological properties of gray matter-based networks in the right amygdala. Globally, transdiagnostic depression severity correlated positively with normalized characteristic path length, a measure implying brain integration ability. Compared with 62 healthy control participants, both major depressive disorder and post-traumatic stress disorder patients showed altered nodal properties in regions of the fronto-limbic-striatal circuit, and global topological organization in major depressive disorder in particular was characterized by decreased integration and segregation. These findings provide evidence for a gray matter-based structural substrate underpinning depression, with the prefrontal-amygdala circuit a potential predictive marker for depressive symptoms across clinical diagnostic categories.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Jing Jiang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- The Third People’s Hospital, Yangshijie 19#, Qingyang, Chengdu, 610031, China
| | - Shitong Zhong
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Jinping Lin
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Yuhao Yao
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Ying Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Jinyuanxilu 699#, Jimei, Xiamen, 361022, China
| |
Collapse
|
5
|
Cardoner N, Andero R, Cano M, Marin-Blasco I, Porta-Casteràs D, Serra-Blasco M, Via E, Vicent-Gil M, Portella MJ. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders. Curr Neuropharmacol 2024; 22:935-962. [PMID: 37403395 PMCID: PMC10845094 DOI: 10.2174/1570159x21666230703091435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 07/06/2023] Open
Abstract
Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.
Collapse
Affiliation(s)
- Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raül Andero
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marta Cano
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Muriel Vicent-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria J. Portella
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
7
|
Liang J, Yu Q, Liu Y, Qiu Y, Tang R, Yan L, Zhou P. Gray matter abnormalities in patients with major depressive disorder and social anxiety disorder: a voxel-based meta-analysis. Brain Imaging Behav 2023; 17:749-763. [PMID: 37725323 PMCID: PMC10733224 DOI: 10.1007/s11682-023-00797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Major depressive and social anxiety disorders have a high comorbidity rate and similar cognitive patterns. However, their unique and shared neuroanatomical characteristics have not been fully identified. METHODS Voxel-based morphometric studies comparing gray matter volume between patients with major depressive disorder/social anxiety disorder and healthy controls were searched using 4 electronic databases from the inception to March 2022. Stereotactic data were extracted and subsequently tested for convergence and differences using activation likelihood estimation. In addition, based on the result of the meta-analysis, behavioral analysis was performed to assess the functional roles of the regions affected by major depressive disorder and/or social anxiety disorder. RESULTS In total, 34 studies on major depressive disorder with 2873 participants, and 10 studies on social anxiety disorder with 1004 subjects were included. Gray matter volume conjunction analysis showed that the right parahippocampal gyrus region, especially the amygdala, was smaller in patients compared to healthy controls. The contrast analysis of major depressive disorder and social anxiety disorder revealed lower gray matter volume in the right lentiform nucleus and medial frontal gyrus in social anxiety disorder and lower gray matter volume in the left parahippocampal gyrus in major depressive disorder. Behavioral analysis showed that regions with lower gray matter volume in social anxiety disorder are strongly associated with negative emotional processes. CONCLUSIONS The shared and unique patterns of gray matter volume abnormalities in patients with major depressive and social anxiety disorder may be linked to the underlying neuropathogenesis of these mental illnesses and provide potential biomarkers. PROSPERO registration number: CRD42021277546.
Collapse
Affiliation(s)
- Junquan Liang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoyun Yu
- Jingzhou Traditional Chinese Medicine Hospital, Jingzhou, Hubei, China
| | - Yuchen Liu
- Shenzhen Luohu District Hospital of TCM, Shenzhen, Guangdong, China
| | - Yidan Qiu
- Centre for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Rundong Tang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Luda Yan
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Peng Zhou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China.
| |
Collapse
|
8
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
9
|
Ojha A, Teresi GI, Slavich GM, Gotlib IH, Ho TC. Social threat, fronto-cingulate-limbic morphometry, and symptom course in depressed adolescents: a longitudinal investigation. Psychol Med 2023; 53:5203-5217. [PMID: 36117278 PMCID: PMC10024647 DOI: 10.1017/s0033291722002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psychosocial stressors characterized by social threat, such as interpersonal loss and social rejection, are associated with depression in adolescents. Few studies, however, have examined whether social threat affects fronto-cingulate-limbic systems implicated in adolescent depression. METHODS We assessed lifetime stressor severity across several domains using the Stress and Adversity Inventory (STRAIN) in 57 depressed adolescents (16.15 ± 1.32 years, 34 females), and examined whether the severity of social threat and non-social threat stressors was associated with gray matter volumes (GMVs) in the anterior cingulate cortex (ACC), amygdala, hippocampus, and nucleus accumbens (NAcc). We also examined how lifetime social threat severity and GMVs in these regions related to depressive symptoms at baseline and over 9 months. RESULTS General stressor severity was related to greater depression severity at baseline and over 9 months. Moreover, greater severity of social threat (but not non-social threat) stressors was associated with smaller bilateral amygdala and NAcc GMVs, and smaller bilateral surface areas of caudal and rostral ACC (all pFDR ⩽ 0.048). However, neither social threat nor non-social threat stressor severity was related to hippocampal GMVs (all pFDR ⩾ 0.318). All fronto-cingulate-limbic structures that were associated with the severity of social threat were negatively associated with greater depression severity over 9 months (all pFDR ⩽ 0.014). Post-hoc analyses suggested that gray matter morphometry of bilateral amygdala, NAcc, and rostral and caudal ACC mediated the association between social threat and depression severity in adolescents over 9 months (all pFDR < 0.048). CONCLUSIONS Social threat specifically affects fronto-cingulate-limbic pathways that contribute to the maintenance of depression in adolescents.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giana I. Teresi
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tiffany C. Ho
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Wang Z, Zhang D, Guan M, Ren X, Li D, Yin K, Zhou P, Li B, Wang H. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder. Front Psychiatry 2023; 14:1163067. [PMID: 37252157 PMCID: PMC10218132 DOI: 10.3389/fpsyt.2023.1163067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in improving depressive symptoms in MDD patients, but the intrinsic mechanism is still unclear. In this study, we investigated the influence of rTMS on brain gray matter volume for alleviating depressive symptoms in MDD patients using structural magnetic resonance imaging (sMRI) data. Methods Patients with first episode, unmedicated patients with MDD (n = 26), and healthy controls (n = 31) were selected for this study. Depressive symptoms were assessed before and after treatment by using the HAMD-17 score. High-frequency rTMS treatment was conducted in patients with MDD over 15 days. The rTMS treatment target is located at the F3 point of the left dorsolateral prefrontal cortex. Structural magnetic resonance imaging (sMRI) data were collected before and after treatment to compare the changes in brain gray matter volume. Results Before treatment, patients with MDD had significantly reduced gray matter volumes in the right fusiform gyrus, left and right inferior frontal gyrus (triangular part), left inferior frontal gyrus (orbital part), left parahippocampal gyrus, left thalamus, right precuneus, right calcarine fissure, and right median cingulate gyrus compared with healthy controls (P < 0.05). After rTMS treatment, significant growth in gray matter volume of the bilateral thalamus was observed in depressed patients (P < 0.05). Conclusion Bilateral thalamic gray matter volumes were enlarged in the thalamus of MDD patients after rTMS treatment and may be the underlying neural mechanism for the treatment of rTMS on depression.
Collapse
Affiliation(s)
- Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongning Zhang
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Xiaojiao Ren
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dan Li
- Department of Psychiatry, Yulin Fifth Hospital, Yulin, China
| | - Kaiming Yin
- Department of Psychiatry, Shi Jiazhuang Psychological Hospital, Shijiazhuang, China
| | - Ping Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
11
|
Hu Y, Zhao C, Zhao H, Qiao J. Abnormal functional connectivity of the nucleus accumbens subregions mediates the association between anhedonia and major depressive disorder. BMC Psychiatry 2023; 23:282. [PMID: 37085792 PMCID: PMC10122393 DOI: 10.1186/s12888-023-04693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The nucleus accumbens (Nac) is a crucial brain region in the pathophysiology of major depressive disorder (MDD) patients with anhedonia. However, the relationship between the functional imaging characteristics of Nac subregions and anhedonia remains unclear. Thus, this study aimed to investigate the role of resting-state functional connectivity (rsFC) of the Nac subregions between MDD and anhedonia. METHODS We performed resting-state functional magnetic resonance imaging (fMRI) to measure the rsFC of Nac subregions in 55 MDD patients and 30 healthy controls (HCs). A two-sample t test was performed to determine the brain regions with varying rsFC among Nac subregions between groups. Then, correlation analyses were carried out to investigate the relationships between the aberrant rsFC of Nac subregions and the severity of anhedonia. Furthermore, we constructed a mediation model to explain the role of the aberrant rsFC of Nac subregions between MDD and the severity of anhedonia. RESULTS Compared with the HC group, decreased rsFC of Nac subregions with regions of the prefrontal cortex, insula, lingual gyrus, and visual association cortex was observed in MDD patients. In the MDD group, the rsFC of the right Nac shell-like subregions with the middle frontal gyrus (MFG)/superior frontal gyrus (SFG) was correlated with consummatory anhedonia, and the rsFC of the Nac core-like subdivisions with the inferior frontal gyrus (IFG)/insula and lingual gyrus/visual association cortex was correlated with anticipatory anhedonia. More importantly, the functional alterations in the Nac subregions mediated the association between anhedonia and depression. CONCLUSIONS The present findings suggest that the functional alteration of the Nac subregions mediates the association between MDD and anhedonia, which provides evidence for the hypothesis that MDD patients have neurobiological underpinnings of reward systems that differ from those of HCs.
Collapse
Affiliation(s)
- Yanqin Hu
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou, 221000, China
| | - Chaoqi Zhao
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou, 221000, China
| | - Houfeng Zhao
- Department of Psychiatry, the Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou, 221000, China.
| | - Juan Qiao
- Department of Psychiatry, the Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
12
|
Yi S, Wang Z, Yang W, Huang C, Liu P, Chen Y, Zhang H, Zhao G, Li W, Fang J, Liu J. Neural activity changes in first-episode, drug-naïve patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study. Front Neurosci 2022; 16:1018387. [PMID: 36312012 PMCID: PMC9597483 DOI: 10.3389/fnins.2022.1018387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Major depressive disorder (MDD) is a disease with prominent individual, medical, and economic impacts. Drug therapy and other treatment methods (such as Electroconvulsive therapy) may induce treatment-resistance and have associated side effects including loss of memory, decrease of reaction time, and residual symptoms. Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel and non-invasive treatment approach which stimulates brain structures with no side-effects. However, it remains little understood whether and how the neural activation is modulated by taVNS in MDD patients. Herein, we used the regional homogeneity (ReHo) to investigate the brain activity in first-episode, drug-naïve MDD patients after taVNS treatment. Materials and methods Twenty-two first-episode, drug-naïve MDD patients were enrolled in the study. These patients received the first taVNS treatment at the baseline time, and underwent resting-state MRI scanning twice, before and after taVNS. All the patients then received taVNS treatments for 4 weeks. The severity of depression was assessed by the 17-item Hamilton Depression Rating Scale (HAMD) at the baseline time and after 4-week’s treatment. Pearson analysis was used to assess the correlation between alterations of ReHo and changes of the HAMD scores. Two patients were excluded due to excessive head movement, two patients lack clinical data in the fourth week, thus, imaging analysis was performed in 20 patients, while correlation analysis between clinical and imaging data was performed in only 18 patients. Results There were significant differences in the ReHo values in first-episode, drug-naïve MDD patients between pre- or post- taVNS. The primary finding is that the patients exhibited a significantly lower ReHo in the left/right median cingulate cortex, the left precentral gyrus, the left postcentral gyrus, the right calcarine cortex, the left supplementary motor area, the left paracentral lobule, and the right lingual gyrus. Pearson analysis revealed a positive correlation between changes of ReHo in the right median cingulate cortex/the left supplementary motor area and changes of HAMD scores after taVNS. Conclusion The decreased ReHo were found after taVNS. The sensorimotor, limbic and visual-related brain regions may play an important role in understanding the underlying neural mechanisms and be the target brain regions in the further therapy.
Collapse
Affiliation(s)
- Sijie Yi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Wang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Guangju Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| | - Jiliang Fang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jiliang Fang,
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Weihui Li,
| |
Collapse
|
13
|
Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022; 31:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.
Collapse
Affiliation(s)
- Elisa Casaglia
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France.,University of Cagliari, Cagliari, Italy
| | - Pierre-Hervé Luppi
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
14
|
Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry 2021; 12:727117. [PMID: 34671279 PMCID: PMC8520991 DOI: 10.3389/fpsyt.2021.727117] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, United States
| | - Retsina Meyer
- Delix Therapeutics, Inc., Concord, MA, United States
| | - Arabo A. Avanes
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Mark Rus
- Delix Therapeutics, Inc., Concord, MA, United States
| | - David E. Olson
- Delix Therapeutics, Inc., Concord, MA, United States
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, Sacramento, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Zheng R, Zhang Y, Yang Z, Han S, Cheng J. Reduced Brain Gray Matter Volume in Patients With First-Episode Major Depressive Disorder: A Quantitative Meta-Analysis. Front Psychiatry 2021; 12:671348. [PMID: 34276443 PMCID: PMC8282212 DOI: 10.3389/fpsyt.2021.671348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The findings of many neuroimaging studies in patients with first-episode major depressive disorder (MDD), and even those of previous meta-analysis, are divergent. To quantitatively integrate these studies, we performed a meta-analysis of gray matter volumes using voxel-based morphometry (VBM). Methods: We performed a comprehensive literature search for relevant studies and traced the references up to May 1, 2021 to select the VBM studies between first-episode MDD and healthy controls (HC). A quantitative meta-analysis of VBM studies on first-episode MDD was performed using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) method, which allows a familywise error rate (FWE) correction for multiple comparisons of the results. Meta-regression was used to explore the effects of demographics and clinical characteristics. Results: Nineteen studies, with 22 datasets comprising 619 first-episode MDD and 707 HC, were included. The pooled and subgroup meta-analysis showed robust gray matter reductions in the left insula, the bilateral parahippocampal gyrus extending into the bilateral hippocampus, the right gyrus rectus extending into the right striatum, the right superior frontal gyrus (dorsolateral part), the left superior frontal gyrus (medial part) and the left superior parietal gyrus. Meta-regression analyses showed that higher HDRS scores were significantly more likely to present reduced gray matter volumes in the right amygdala, and the mean age of MDD patients in each study was negatively correlated with reduced gray matter in the left insula. Conclusions: The present meta-analysis revealed that structural abnormalities in the fronto-striatal-limbic and fronto-parietal networks are essential characteristics in first-episode MDD patients, which may become a potential target for clinical intervention.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|