1
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
2
|
Chen X, Bell NA, Coffman BL, Rabino AA, Garcia-Mata R, Kammermeier PJ, Yule DI, Axelrod D, Smrcka AV, Giovannucci DR, Anantharam A. A PACAP-activated network for secretion requires coordination of Ca 2+ influx and Ca 2+ mobilization. Mol Biol Cell 2024; 35:ar92. [PMID: 38758660 PMCID: PMC11244167 DOI: 10.1091/mbc.e24-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | | | | | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | | | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| |
Collapse
|
3
|
Chen X, Bell NA, Coffman BL, Rabino AA, Garcia-Mata R, Kammermeier PJ, Yule DI, Axelrod D, Smrcka AV, Giovannucci DR, Anantharam A. A PACAP-activated network for secretion requires coordination of Ca 2+ influx and Ca 2+ mobilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574069. [PMID: 38260572 PMCID: PMC10802325 DOI: 10.1101/2024.01.03.574069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca 2+ which are disrupted when Ca 2+ influx through L-type channels is blocked or internal Ca 2+ stores are depleted. PACAP liberates stored Ca 2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca 2+ mobilization to Ca 2+ influx and supporting Ca 2+ -induced Ca 2+ -release. These Ca 2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ , is regulated by a signaling network that promotes sustained elevations in intracellular Ca 2+ through multiple pathways.
Collapse
|
4
|
Skolariki K, Vrahatis AG, Krokidis MG, Exarchos TP, Vlamos P. Assessing and Modelling of Post-Traumatic Stress Disorder Using Molecular and Functional Biomarkers. BIOLOGY 2023; 12:1050. [PMID: 37626936 PMCID: PMC10451531 DOI: 10.3390/biology12081050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder that develops following exposure to traumatic events. PTSD is influenced by catalytic factors such as dysregulated hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter imbalances, and oxidative stress. Genetic variations may act as important catalysts, impacting neurochemical signaling, synaptic plasticity, and stress response systems. Understanding the intricate gene networks and their interactions is vital for comprehending the underlying mechanisms of PTSD. Focusing on the catalytic factors of PTSD is essential because they provide valuable insights into the underlying mechanisms of the disorder. By understanding these factors and their interplay, researchers may uncover potential targets for interventions and therapies, leading to more effective and personalized treatments for individuals with PTSD. The aforementioned gene networks, composed of specific genes associated with the disorder, provide a comprehensive view of the molecular pathways and regulatory mechanisms involved in PTSD. Through this study valuable insights into the disorder's underlying mechanisms and opening avenues for effective treatments, personalized interventions, and the development of biomarkers for early detection and monitoring are provided.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (K.S.); (A.G.V.); (T.P.E.); (P.V.)
| | | | | |
Collapse
|
5
|
Wang X, Mei D, Lu Z, Zhang Y, Sun Y, Lu T, Yan H, Yue W. Genome-wide association study identified six loci associated with adverse drug reactions to aripiprazole in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:44. [PMID: 37491364 PMCID: PMC10368716 DOI: 10.1038/s41537-023-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Aripiprazole is recommended for routine use in schizophrenia patients. However, the biological mechanism for the adverse drug reactions (ADRs) among schizophrenia patients with the antipsychotic drug aripiprazole is far from clear. To explore the potential genetic factors that may cause movement-related adverse antipsychotic effects in patients, we conducted an association analysis between movement-related ADRs and SNPs in schizophrenia patients receiving aripiprazole monotherapy. In this study, multiple ADRs of 384 patients were quantified within 6-week treatment, and the scores of movement-related ADRs at baseline and follow-up time points during treatment were obtained. The highest score record was used as the quantitative index in analysis, and genetic analysis at the genome-wide level was conducted. The SNP rs4149181 in SLC22A8 [P = 2.28 × 10-8] showed genome-wide significance, and rs2284223 in ADCYAP1R1 [P = 9.76 × 10-8], rs73258503 in KCNIP4 [P = 1.39 × 10-7], rs678428 in SMAD9 [P = 4.70 × 10-7], rs6421034 in NAP1L4 [P = 6.80 × 10-7], and rs1394796 in ERBB4 [P = 8.60 × 10-7] were found to be significantly associated with movement-related ADRs. The combined prediction model of these six loci showed acceptable performance in predicting adverse events [area under the curve (AUC): 0.84]. Combined with the function and network of the above genes and other candidate loci (KCNA1, CACNG1, etc.), we hypothesize that SLC22A8 and KCNIP4-Kv channel perform their respective functions as transporter or channel and participate in the in vivo metabolism or effects of aripiprazole. The above results imply the important function of ion transporters and channels in movement-related adverse antipsychotic effects in aripiprazole monotherapy schizophrenia patients.
Collapse
Affiliation(s)
- Xueping Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Dongli Mei
- School of Nursing, Peking University, 10019, Beijing, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
6
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|