1
|
Fard YA, Sadeghi EN, Pajoohesh Z, Gharehdaghi Z, Khatibi DM, Khosravifar S, Pishkari Y, Nozari S, Hijazi A, Pakmehr S, Shayan SK. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32986. [PMID: 38837296 DOI: 10.1002/ajmg.b.32986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
Collapse
Affiliation(s)
| | | | - Zohreh Pajoohesh
- Faculty of Medicine, Zabol Univeristy of Medical Sciences, Zabol, Iran
| | - Zahra Gharehdaghi
- Department of Pharmacology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Nozari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmed Hijazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Okimura T, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable and transportable resting-state neural signatures characterized by functional networks, neurotransmitters, and clinical symptoms in autism. Mol Psychiatry 2024:10.1038/s41380-024-02759-3. [PMID: 39342041 DOI: 10.1038/s41380-024-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Drug Discovery Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Quantum Life Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan.
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
3
|
Park S, Haak KV, Oldham S, Cho H, Byeon K, Park BY, Thomson P, Chen H, Gao W, Xu T, Valk S, Milham MP, Bernhardt B, Di Martino A, Hong SJ. A shifting role of thalamocortical connectivity in the emergence of cortical functional organization. Nat Neurosci 2024; 27:1609-1619. [PMID: 38858608 DOI: 10.1038/s41593-024-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The cortical patterning principle has been a long-standing question in neuroscience, yet how this translates to macroscale functional specialization in the human brain remains largely unknown. Here we examine age-dependent differences in resting-state thalamocortical connectivity to investigate its role in the emergence of large-scale functional networks during early life, using a primarily cross-sectional but also longitudinal approach. We show that thalamocortical connectivity during infancy reflects an early differentiation of sensorimotor networks and genetically influenced axonal projection. This pattern changes in childhood, when connectivity is established with the salience network, while decoupling externally and internally oriented functional systems. A developmental simulation using generative network models corroborated these findings, demonstrating that thalamic connectivity contributes to developing key features of the mature brain, such as functional segregation and the sensory-association axis, especially across 12-18 years of age. Our study suggests that the thalamus plays an important role in functional specialization during development, with potential implications for studying conditions with compromised internal and external processing.
Collapse
Affiliation(s)
- Shinwon Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Koen V Haak
- Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute, Radboud University, Radboud, The Netherlands
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Hanbyul Cho
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Kyoungseob Byeon
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Haitao Chen
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wei Gao
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ting Xu
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7), Brain and Behavior, Forschungszentrum, Juelich, Germany
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea.
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
4
|
Xiao Y, Zhao L, Zang X, Xue S. Compressed primary-to-transmodal gradient is accompanied with subcortical alterations and linked to neurotransmitters and cellular signatures in major depressive disorder. Hum Brain Mapp 2023; 44:5919-5935. [PMID: 37688552 PMCID: PMC10619397 DOI: 10.1002/hbm.26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to involve widespread changes in low-level sensorimotor and higher-level cognitive functions. Recent research found that a primary-to-transmodal gradient could capture a cortical hierarchical organization ranging from perception and action to cognition in healthy subjects, but a prominent gradient dysfunction in MDD patients. However, whether and how this cortical gradient is linked to subcortical impairments and whether it is reflected in the microscale neurotransmitter systems and cell type-specific transcriptional signatures remain largely unknown. Data were acquired from 323 MDD patients and 328 sex- and age-matched healthy controls derived from the REST-meta-MDD project, and the human brain neurotransmitter systems density maps and gene expression data were drawn from two publicly available datasets. We investigated alterations of the primary-to-transmodal gradient in MDD patients and their correlations with clinical symptoms of depression and anxiety, as well as their paralleled subcortical impairments. The correlations between MDD-related gradient alterations and densities of the neurotransmitter systems and gene expression information were assessed, respectively. The results demonstrated that MDD patients had a compressed primary-to-transmodal gradient accompanied by paralleled alterations in subcortical regions including the caudate, amygdala, and thalamus. The case-control gradient differences were spatially correlated with the densities of the neurotransmitter systems including the serotonin and dopamine receptors, and meanwhile with gene expression enriched in astrocytes, excitatory and inhibitory neuronal cells. These findings mapped the paralleled subcortical impairments in cortical hierarchical organization and also helped us understand the possible molecular and cellular substrates of the co-occurrence of high-level cognitive impairments with low-level sensorimotor abnormalities in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Lei Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Xuelian Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Shao‐Wei Xue
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| |
Collapse
|
5
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534053. [PMID: 37034620 PMCID: PMC10081283 DOI: 10.1101/2023.03.26.534053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P < 0.05 , family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Laboratory for Drug Discovery and Disease Research, SHIONOGI & CO., LTD, Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Y. Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C. Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef Incorporation, Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryu-ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
8
|
Abnormal Dynamic Functional Network Connectivity in Adults with Autism Spectrum Disorder. Clin Neuroradiol 2022; 32:1087-1096. [PMID: 35543744 DOI: 10.1007/s00062-022-01173-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE This study sought to explore changes of brain dynamic functional network connectivity (dFNC) in adults with autism spectrum disorder (ASD) and investigate their relationship with clinical manifestations. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 78 adult ASD patients from autism brain imaging data exchange datasets, and 65 age-matched healthy controls subjects from the local community. Independent component analysis was conducted to evaluate dFNC patterns on the basis of 13 independent components (ICs) within 11 resting-state networks (RSN), namely, auditory network (AUDN), basal ganglia network (BGN), language network (LN), sensorimotor network (SMN), precuneus network (PUCN), salience network (SN), visuospatial network (VSN), dorsal default mode network (dDMN), high visual network (hVIS), primary visual network (pVIS), ventral default mode network (vDMN). Fraction time, mean dwell time, number of transitions, and RSN connectivity were calculated for group comparisons. Correlation analyses were performed between abnormal metrics and autism diagnostic observation schedule (ADOS) scores. RESULTS Compared with controls, ASD patients had higher fraction time and mean dwell time in state 2 (P = 0.017, P = 0.014). Reduced dFNC was found in the SMN with PUCN, SMN with hVIS, and increased dFNC was observed in the dDMN with SN in state 2 in the ASD group. Fraction time and mean dwell time was positively correlated with stereotyped behavior scores of ADOS. CONCLUSION The findings demonstrated the importance of evaluating transient alterations in specific neural networks of adult ASD patients. The abnormal metrics and connectivity may be related to symptoms such as stereotyped behavior.
Collapse
|
9
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|