1
|
Chang L, Hao X, Yu J, Zhang J, Liu Y, Ye X, Yu Z, Gao F, Pang X, Zhou C. Developing a machine learning model for predicting venlafaxine active moiety concentration: a retrospective study using real-world evidence. Int J Clin Pharm 2024; 46:899-909. [PMID: 38753076 DOI: 10.1007/s11096-024-01724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Venlafaxine is frequently prescribed for patients with depression. To control the concentration of venlafaxine within the therapeutic window for the best treatment effect, a model to predict venlafaxine concentration is necessary. AIM Our objective was to develop a prediction model for venlafaxine concentration using real-world evidence based on machine learning and deep learning techniques. METHOD Patients who underwent venlafaxine treatment between November 2019 and August 2022 were included in the study. Important variables affecting venlafaxine concentration were identified using a combination of univariate analysis, sequential forward selection, and machine learning techniques. Predictive performance of nine machine learning and deep learning algorithms were assessed, and the one with the optimal performance was selected for modeling. The final model was interpreted using SHapley Additive exPlanations. RESULTS A total of 330 eligible patients were included. Five influential variables that affect venlafaxine concentration were venlafaxine daily dose, sex, age, hyperlipidemia, and adenosine deaminase. The venlafaxine concentration prediction model was developed using the eXtreme Gradient Boosting algorithm (R2 = 0.65, mean absolute error = 77.92, root mean square error = 93.58). In the testing cohort, the accuracy of the predicted concentration within ± 30% of the actual concentration was 73.49%. In the subgroup analysis, the prediction accuracy was 69.39% within the recommended therapeutic range of venlafaxine concentration within ± 30% of the actual value. CONCLUSION The XGBoost model for predicting blood concentration of venlafaxine using real-world evidence was developed, guiding the adjustment of regimen in clinical practice.
Collapse
Affiliation(s)
- Luyao Chang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 066003, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd., Dalian, China
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 066003, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Yimeng Liu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 066003, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuxiao Ye
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Yu
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Xiaolu Pang
- Hebei Medical University, 361 Zhongshan East Road, Chang'an District, Shijiazhuang, 050011, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 066003, China.
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, Zhou Y, van den Anker J, Hao GX, Zhao W. Machine Learning: A New Approach for Dose Individualization. Clin Pharmacol Ther 2024; 115:727-744. [PMID: 37713106 DOI: 10.1002/cpt.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
The application of machine learning (ML) has shown promising results in precision medicine due to its exceptional performance in dealing with complex multidimensional data. However, using ML for individualized dosing of medicines is still in its early stage, meriting further exploration. A systematic review of study designs and modeling details of using ML for individualized dosing of different drugs was performed. We have summarized the status of the study populations, predictive targets, and data sources for ML modeling, the selection of ML algorithms and features, and the evaluation and validation of their predictive performance. We also used the Prediction model Risk of Bias Assessment Tool (PROBAST) to assess the risk of bias of included studies. Currently, ML can be used for both a priori and a posteriori dose selection and optimization, and it can also assist the implementation of therapeutic drug monitoring. However, studies are mainly focused on drugs with narrow therapeutic windows, predominantly immunosuppressants (N = 23, 35.9%) and anti-infectives (N = 21, 32.8%), and there is currently only very limited attention for special populations, such as children (N = 22, 34.4%). Most studies showed poor methodological quality and a high risk of bias. The lack of external validation and clinical utility evaluation currently limits the further clinical implementation of ML for dose individualization. We therefore have proposed several ways to improve the clinical relevance of the studies and facilitate the translation of ML models into clinical practice.
Collapse
Affiliation(s)
- Qiu-Yue Li
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
3
|
Fu R, Hao X, Yu J, Wang D, Zhang J, Yu Z, Gao F, Zhou C. Machine learning-based prediction of sertraline concentration in patients with depression through therapeutic drug monitoring. Front Pharmacol 2024; 15:1289673. [PMID: 38510645 PMCID: PMC10953499 DOI: 10.3389/fphar.2024.1289673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Sertraline is a commonly employed antidepressant in clinical practice. In order to control the plasma concentration of sertraline within the therapeutic window to achieve the best effect and avoid adverse reactions, a personalized model to predict sertraline concentration is necessary. Aims: This study aimed to establish a personalized medication model for patients with depression receiving sertraline based on machine learning to provide a reference for clinicians to formulate drug regimens. Methods: A total of 415 patients with 496 samples of sertraline concentration from December 2019 to July 2022 at the First Hospital of Hebei Medical University were collected as the dataset. Nine different algorithms, namely, XGBoost, LightGBM, CatBoost, random forest, GBDT, SVM, lasso regression, ANN, and TabNet, were used for modeling to compare the model abilities to predict sertraline concentration. Results: XGBoost was chosen to establish the personalized medication model with the best performance (R 2 = 0.63). Five important variables, namely, sertraline dose, alanine transaminase, aspartate transaminase, uric acid, and sex, were shown to be correlated with sertraline concentration. The model prediction accuracy of sertraline concentration in the therapeutic window was 62.5%. Conclusion: In conclusion, the personalized medication model of sertraline for patients with depression based on XGBoost had good predictive ability, which provides guidance for clinicians in proposing an optimal medication regimen.
Collapse
Affiliation(s)
- Ran Fu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd, Dalian, China
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Donghan Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd, Beijing, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd, Beijing, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Cheng L, Zhao Y, Liang Z, You X, Jia C, Liu X, Wang Q, Sun F. Prediction of plasma trough concentration of voriconazole in adult patients using machine learning. Eur J Pharm Sci 2023; 188:106506. [PMID: 37356464 DOI: 10.1016/j.ejps.2023.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Plasma trough concentration of voriconazole (VCZ) was associated with its toxicity and efficacy. However, the nonlinear pharmacokinetic characteristics of VCZ make it difficult to determine the relationship between clinical characteristics and its concentration. We intended to present a machine learning (ML)-based method to predict toxic plasma trough concentration of VCZ (>5 μg/mL). METHODS A single center retrospective study was conducted. Three ML algorithms were used to estimate the concentration in adult patients, including random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGBoost). The importance of variables was recognized by the SHapley Additive exPlanations (SHAP) method. In addition, an external validation set was used to validate the robustness of models. RESULTS A total of 1318 VCZ plasma concentration were included, with 33 variables enrolled in the model. Nine classification models were developed using the RF, GB, and XGBoost algorithms. Most models performed well for both the training set and test set, with an average balanced accuracy (BA) of 0.704 and an average accuracy (ACC) of 0.788. In addition, the average Matthews correlation coefficient value reached 0.484, which indicated the predicted values are meaningful. Based on the average BA and ACC values, the predictive ability of the models can be ranked from best to worst as follows: younger adult models > mixed models > elderly models, and XGBoost models > GBT models > RF models. The SHAP results showed that the top five influencing factors in younger adult patients (<60 years) were albumin, total bile acid (TBA), platelets count, age, and inflammation, while the top five influencing factors in elderly patients were albumin, TBA, aspartate aminotransferase, creatinine, and alanine aminotransferase. Furthermore, the prediction of external validation set for VCZ concentrations verified the high reliability of the models, for the ACC value of 0.822 by the best model. CONCLUSIONS The ML models can be reliable tools for predicting toxic concentration exposure of VCZ. The SHAP results may provide useful guidelines for dosage adjustment of VCZ.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Yue Zhao
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Zaiming Liang
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Xi You
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Changsheng Jia
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Xiuying Liu
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Qian Wang
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China.
| | - Fengjun Sun
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China.
| |
Collapse
|
5
|
Hao Y, Zhang J, Yang L, Zhou C, Yu Z, Gao F, Hao X, Pang X, Yu J. A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real-world data. Br J Clin Pharmacol 2023; 89:2714-2725. [PMID: 37005382 DOI: 10.1111/bcp.15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
AIMS This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real-world data via machine learning techniques to assist clinical regimen decisions. METHODS A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10-fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation. RESULTS Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis (P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200-750 ng mL-1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value. CONCLUSIONS This work is the first real-world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
Collapse
Affiliation(s)
- Yupei Hao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Lin Yang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd., Dalian, China
| | - Xiaolu Pang
- Department of Physical Diagnostics, Hebei Medical University, Shijiazhuang, China
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Yang L, Zhang J, Yu J, Yu Z, Hao X, Gao F, Zhou C. Predicting plasma concentration of quetiapine in patients with depression using machine learning techniques based on real-world evidence. Expert Rev Clin Pharmacol 2023; 16:741-750. [PMID: 37466101 DOI: 10.1080/17512433.2023.2238604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES We develop a model for predicting quetiapine levels in patients with depression, using machine learning to support decisions on clinical regimens. METHODS Inpatients diagnosed with depression at the First Hospital of Hebei Medical University from 1 November 2019, to 31 August were enrolled. The ratio of training cohort to testing cohort was fixed at 80%:20% for the whole dataset. Univariate analysis was executed on all information to screen the important variables influencing quetiapine TDM. The prediction abilities of nine machine learning and deep learning algorithms were compared. The prediction model was created using an algorithm with better model performance, and the model's interpretation was done using the SHapley Additive exPlanation. RESULTS There were 333 individuals and 412 cases of quetiapine TDM included in the study. Six significant variables were selected to establish the individualized medication model. A quetiapine concentration prediction model was created through CatBoost. In the testing cohort, the projected TDM's accuracy was 61.45%. The prediction accuracy of quetiapine concentration within the effective range (200-750 ng/mL) was 75.47%. CONCLUSIONS This study predicts the plasma concentration of quetiapine in depression patients by machine learning, which is meaningful for the clinical medication guidance.
Collapse
Affiliation(s)
- Lin Yang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co, Ltd, Beijing, China
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Hao
- Dalian Medicinovo Technology Co, Ltd, Dalian, China
| | - Fei Gao
- Beijing Medicinovo Technology Co, Ltd, Beijing, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Zhu X, Zhang M, Wen Y, Shang D. Machine learning advances the integration of covariates in population pharmacokinetic models: Valproic acid as an example. Front Pharmacol 2022; 13:994665. [PMID: 36324679 PMCID: PMC9621318 DOI: 10.3389/fphar.2022.994665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Many studies associated with the combination of machine learning (ML) and pharmacometrics have appeared in recent years. ML can be used as an initial step for fast screening of covariates in population pharmacokinetic (popPK) models. The present study aimed to integrate covariates derived from different popPK models using ML. Methods: Two published popPK models of valproic acid (VPA) in Chinese epileptic patients were used, where the population parameters were influenced by some covariates. Based on the covariates and a one-compartment model that describes the pharmacokinetics of VPA, a dataset was constructed using Monte Carlo simulation, to develop an XGBoost model to estimate the steady-state concentrations (Css) of VPA. We utilized SHapley Additive exPlanation (SHAP) values to interpret the prediction model, and calculated estimates of VPA exposure in four assumed scenarios involving different combinations of CYP2C19 genotypes and co-administered antiepileptic drugs. To develop an easy-to-use model in the clinic, we built a simplified model by using CYP2C19 genotypes and some noninvasive clinical parameters, and omitting several features that were infrequently measured or whose clinically available values were inaccurate, and verified it on our independent external dataset. Results: After data preprocessing, the finally generated combined dataset was divided into a derivation cohort and a validation cohort (8:2). The XGBoost model was developed in the derivation cohort and yielded excellent performance in the validation cohort with a mean absolute error of 2.4 mg/L, root-mean-squared error of 3.3 mg/L, mean relative error of 0%, and percentages within ±20% of actual values of 98.85%. The SHAP analysis revealed that daily dose, time, CYP2C19*2 and/or *3 variants, albumin, body weight, single dose, and CYP2C19*1*1 genotype were the top seven confounding factors influencing the Css of VPA. Under the simulated dosage regimen of 500 mg/bid, the VPA exposure in patients who had CYP2C19*2 and/or *3 variants and no carbamazepine, phenytoin, or phenobarbital treatment, was approximately 1.74-fold compared to those with CYP2C19*1/*1 genotype and co-administered carbamazepine + phenytoin + phenobarbital. The feasibility of the simplified model was fully illustrated by its performance in our external dataset. Conclusion: This study highlighted the bridging role of ML in big data and pharmacometrics, by integrating covariates derived from different popPK models.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Yuguan Wen, ; Dewei Shang,
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Yuguan Wen, ; Dewei Shang,
| |
Collapse
|
8
|
Zhu X, Hu J, Xiao T, Huang S, Wen Y, Shang D. An interpretable stacking ensemble learning framework based on multi-dimensional data for real-time prediction of drug concentration: The example of olanzapine. Front Pharmacol 2022; 13:975855. [PMID: 36238557 PMCID: PMC9552071 DOI: 10.3389/fphar.2022.975855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aim: Therapeutic drug monitoring (TDM) has evolved over the years as an important tool for personalized medicine. Nevertheless, some limitations are associated with traditional TDM. Emerging data-driven model forecasting [e.g., through machine learning (ML)-based approaches] has been used for individualized therapy. This study proposes an interpretable stacking-based ML framework to predict concentrations in real time after olanzapine (OLZ) treatment. Methods: The TDM-OLZ dataset, consisting of 2,142 OLZ measurements and 472 features, was formed by collecting electronic health records during the TDM of 927 patients who had received OLZ treatment. We compared the performance of ML algorithms by using 10-fold cross-validation and the mean absolute error (MAE). The optimal subset of features was analyzed by a random forest-based sequential forward feature selection method in the context of the top five heterogeneous regressors as base models to develop a stacked ensemble regressor, which was then optimized via the grid search method. Its predictions were explained by using local interpretable model-agnostic explanations (LIME) and partial dependence plots (PDPs). Results: A state-of-the-art stacking ensemble learning framework that integrates optimized extra trees, XGBoost, random forest, bagging, and gradient-boosting regressors was developed for nine selected features [i.e., daily dose (OLZ), gender_male, age, valproic acid_yes, ALT, K, BW, MONO#, and time of blood sampling after first administration]. It outperformed other base regressors that were considered, with an MAE of 0.064, R-square value of 0.5355, mean squared error of 0.0089, mean relative error of 13%, and ideal rate (the percentages of predicted TDM within ± 30% of actual TDM) of 63.40%. Predictions at the individual level were illustrated by LIME plots, whereas the global interpretation of associations between features and outcomes was illustrated by PDPs. Conclusion: This study highlights the feasibility of the real-time estimation of drug concentrations by using stacking-based ML strategies without losing interpretability, thus facilitating model-informed precision dosing.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Yuguan Wen, ; Dewei Shang,
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Yuguan Wen, ; Dewei Shang,
| |
Collapse
|
9
|
Verhaeghe J, Dhaese SAM, De Corte T, Vander Mijnsbrugge D, Aardema H, Zijlstra JG, Verstraete AG, Stove V, Colin P, Ongenae F, De Waele JJ, Van Hoecke S. Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients. BMC Med Inform Decis Mak 2022; 22:224. [PMID: 36008808 PMCID: PMC9404625 DOI: 10.1186/s12911-022-01970-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Beta-lactam antimicrobial concentrations are frequently suboptimal in critically ill patients. Population pharmacokinetic (PopPK) modeling is the golden standard to predict drug concentrations. However, currently available PopPK models often lack predictive accuracy, making them less suited to guide dosing regimen adaptations. Furthermore, many currently developed models for clinical applications often lack uncertainty quantification. We, therefore, aimed to develop machine learning (ML) models for the prediction of piperacillin plasma concentrations while also providing uncertainty quantification with the aim of clinical practice. METHODS Blood samples for piperacillin analysis were prospectively collected from critically ill patients receiving continuous infusion of piperacillin/tazobactam. Interpretable ML models for the prediction of piperacillin concentrations were designed using CatBoost and Gaussian processes. Distribution-based Uncertainty Quantification was added to the CatBoost model using a proposed Quantile Ensemble method, useable for any model optimizing a quantile function. These models are subsequently evaluated using the distribution coverage error, a proposed interpretable uncertainty quantification calibration metric. Development and internal evaluation of the ML models were performed on the Ghent University Hospital database (752 piperacillin concentrations from 282 patients). Ensuing, ML models were compared with a published PopPK model on a database from the University Medical Centre of Groningen where a different dosing regimen is used (46 piperacillin concentrations from 15 patients.). RESULTS The best performing model was the Catboost model with an RMSE and [Formula: see text] of 31.94-0.64 and 33.53-0.60 for internal evaluation with and without previous concentration. Furthermore, the results prove the added value of the proposed Quantile Ensemble model in providing clinically useful individualized uncertainty predictions and show the limits of homoscedastic methods like Gaussian Processes in clinical applications. CONCLUSIONS Our results show that ML models can consistently estimate piperacillin concentrations with acceptable and high predictive accuracy when identical dosing regimens as in the training data are used while providing highly relevant uncertainty predictions. However, generalization capabilities to other dosing schemes are limited. Notwithstanding, incorporating ML models in therapeutic drug monitoring programs seems definitely promising and the current work provides a basis for validating the model in clinical practice.
Collapse
Affiliation(s)
- Jarne Verhaeghe
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium.
| | - Sofie A M Dhaese
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thomas De Corte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Heleen Aardema
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Veronique Stove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Colin
- Department of Anesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Femke Ongenae
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sofie Van Hoecke
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium.
| |
Collapse
|
10
|
A Hybrid Model Associating Population Pharmacokinetics with Machine Learning: A Case Study with Iohexol Clearance Estimation. Clin Pharmacokinet 2022; 61:1157-1165. [PMID: 35641861 DOI: 10.1007/s40262-022-01138-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy and a population pharmacokinetic model is frequently used to estimate pharmacokinetic parameters in individuals, however with some uncertainty (bias). Recent works have shown that the performance in individual estimation or pharmacokinetic parameters can be improved by combining population pharmacokinetic and machine learning algorithms. OBJECTIVE The objective of this work was to investigate the use of a hybrid machine learning/population pharmacokinetic approach to improve individual iohexol clearance estimation. METHODS The reference iohexol clearance values were derived from 500 simulated profiles (samples collected between 0.1 and 24.7 h) using a population pharmacokinetic model we recently developed in Monolix and obtained using all the concentration timepoints available. Xgboost and glmnet algorithms able to predict the error of MAP-BE clearance estimates based on a limited sampling strategy (0.1 h, 1 h, and 9 h) versus reference values were developed in a training subset (75%) and were evaluated in a testing subset (25%) and in 36 real patients. RESULTS The MAP-BE limited sampling strategy estimated clearance was corrected by the machine learning predicted error leading to a decrease in root mean squared error by 29% and 24%, and in the percentage of profiles with the mean prediction error out of the ± 20% bias by 60% and 40% in the external validation dataset for the glmnet and Xgboost machine learning algorithms, respectively. These results were attributable to a decrease in the eta-shrinkage (shrinkage for a MAP-BE limited sampling strategy = 32.4%, glmnet = 18.2%, and Xgboost = 19.4% in the external dataset). CONCLUSIONS In conclusion, this hybrid algorithm represents a significant improvement in comparison to MAP-BE estimation alone.
Collapse
|