1
|
Hong J, Dembo RS, DaWalt LS, Baker MW, Berry-Kravis E, Mailick MR. Mortality in Women across the FMR1 CGG Repeat Range: The Neuroprotective Effect of Higher Education. Cells 2023; 12:2137. [PMID: 37681869 PMCID: PMC10486613 DOI: 10.3390/cells12172137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Higher education has been shown to have neuroprotective effects, reducing the risk of Alzheimer's and Parkinson's diseases, slowing the rate of age-related cognitive decline, and is associated with lower rates of early mortality. In the present study, the association between higher education, fragile X messenger ribonucleoprotein 1 (FMR1) cytosine-guanine-guanine (CGG) repeat number, and mortality before life expectancy was investigated in a population cohort of women born in 1939. The findings revealed a significant interaction between years of higher education and CGG repeat number. Counter to the study's hypothesis, the effects of higher education became more pronounced as the number of CGG repeats increased. There was no effect of years of higher education on early mortality for women who had 25 repeats, while each year of higher education decreased the hazard of early mortality by 8% for women who had 30 repeats. For women with 41 repeats, the hazard was decreased by 14% for each additional year of higher education. The interaction remained significant after controlling for IQ and family socioeconomic status (SES) measured during high school, as well as factors measured during adulthood (family, psychosocial, health, and financial factors). The results are interpreted in the context of differential sensitivity to the environment, a conceptualization that posits that some people are more reactive to both negative and positive environmental conditions. Expansions in CGG repeats have been shown in previous FMR1 research to manifest such a differential sensitivity pattern.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| | - Robert S. Dembo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
- NORC at the University of Chicago, Chicago, IL 60603, USA
| | - Leann Smith DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| | - Mei Wang Baker
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA;
- Wisconsin State Laboratory of Hygiene, Madison, WI 53706, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| |
Collapse
|
2
|
Maltman N, DaWalt LS, Hong J, Baker MW, Berry-Kravis EM, Brilliant MH, Mailick M. FMR1 CGG Repeats and Stress Influence Self-Reported Cognitive Functioning in Mothers. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2023; 128:1-20. [PMID: 36548377 PMCID: PMC10445796 DOI: 10.1352/1944-7558-128.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2022] [Indexed: 06/17/2023]
Abstract
Variation in the FMR1 gene may affect aspects of cognition, such as executive function and memory. Environmental factors, such as stress, may also negatively impact cognitive functioning. Participants included 1,053 mothers of children with and without developmental disabilities. Participants completed self-report measures of executive function, memory, and stress (i.e., life events, parenting status), and provided DNA to determine CGG repeat length (ranging from 7 to 192 CGGs). Stress exposure significantly predicted greater self-reported difficulties in executive function and the likelihood of memory problems. Cubic CGG effects independently predicted executive function and memory difficulties, suggesting effects of both genetic variation and environmental stress exposure on cognitive functioning.
Collapse
Affiliation(s)
- Nell Maltman
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Leann Smith DaWalt
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Jinkuk Hong
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | | | | | | | - Marsha Mailick
- Murray H. Brilliant and Marsha Mailick, University of Wisconsin-Madison
| |
Collapse
|