1
|
Webb SM, Miller BW, Wroten MG, Sacramento A, Travis KO, Kippin TE, Ben-Shahar O, Szumlinski KK. Replication and extension of the subregion selectivity of glutamate-related changes within the nucleus accumbens associated with the incubation of cocaine-craving. Pharmacol Biochem Behav 2024; 245:173889. [PMID: 39389205 DOI: 10.1016/j.pbb.2024.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cue-elicited drug-seeking behavior intensifies with the passage of time during withdrawal from drug taking and this "incubation of cocaine-craving" involves alterations in nucleus accumbens (NA) glutamate transmission. Here, we employed a combination of in vivo microdialysis and immunoblotting approaches to further examine changes in biochemical indices of glutamate transmission within NA subregions that accompany the incubation of cocaine-craving exhibited by male rats with a 10-day history of 6-h access to intravenous cocaine (0.25 mg/infusion). Immunoblotting on whole cell lysates from the core subregion (NAc core) revealed interactions between cocaine self-administration history, withdrawal and drug cue re-exposure for Homer2a/b, mGlu1, and GluN2b expression, as well as indices of Akt and ERK activity. With the exception of PKCε phosphorylation, most protein changes within the shell subregion (NAc shell) depended on drug cue re-exposure and cocaine history rather than varying in a consistent time-dependent manner. Reduced basal extracellular glutamate content was apparent only in the NAc core of cocaine-experienced rats during protracted (30 days) withdrawal and this was accompanied by a markedly blunted capacity of the mGlu1/5 agonist DHPG to elevate glutamate levels within this subregion. Finally, over-expressing neither Homer1c nor Homer2b within the NAc core during protracted cocaine withdrawal altered the magnitude of cue-elicited responding, its extinction or cocaine-primed reinstatement of drug-seeking behavior. The present findings are consistent with the extant literature implicating changes in Group 1 mGlu receptor function within the NAc core subregion as central to incubated cocaine-craving and provide further evidence against a major role for Homer proteins in gating incubated cocaine-craving. Further, our results provide novel correlational evidence implicating elevated Akt and blunted ERK activity within the NAc core as potential contributors to the expression of incubated cocaine-craving, worthy of future investigation.
Collapse
Affiliation(s)
- Sierra M Webb
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Arianne Sacramento
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Katherine O Travis
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America.
| |
Collapse
|
2
|
Chavez CLJ, Scheldrup GP, Madory LE, Denning CJE, Lee EC, Nguyen DT, Castro M, Garcia A, Torres‐Gonzales J, Herbert JN, Kotlyar D, Riazat N, Pakter W, Le W, Van Doren E, Ter Galstian M, Szumlinski KK. Biochemical changes precede affective and cognitive anomalies in aging adult C57BL/6J mice with a prior history of adolescent alcohol binge-drinking. Addict Biol 2024; 29:e70006. [PMID: 39665499 PMCID: PMC11635696 DOI: 10.1111/adb.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The early initiation of binge-drinking and biological sex are critical risk factors for the development of affective disturbances and cognitive decline, as well as neurodegenerative diseases including Alzheimer's disease. Further, a history of excessive alcohol consumption alters normal age-related changes in the pattern of protein expression in the brain, which may relate to an acceleration of cognitive decline. Here, we aimed to disentangle the interrelation between a history of binge-drinking during adolescence, biological sex and normal aging on the manifestation of negative affect, cognitive decline and associated biochemical pathology. To this end, adolescent male and female C57BL/6J mice (PND 28-29) underwent 30 days of alcohol binge-drinking using a modified drinking-in-the-dark (DID) paradigm. Then, mice were assayed for negative affect, sensorimotor gating and cognition at three developmental stages during adulthood-mature adulthood (6 months), pre-middle age (9 months) and middle age (12 months). Behavioural testing was then followed by immunoblotting to index the protein expression of glutamate receptors, neuropathological markers [Tau, p (Thr217)-Tau, p (Ser396)-Tau, BACE, APP, Aβ], as well as ERK activation within the entorhinal cortex, prefrontal cortex and amygdala. Across this age span, we detected only a few age-related changes in our measures of negative affect or spatial learning/memory in the Morris water maze and all of these changes were sex-specific. Prior adolescent binge-drinking impaired behaviour only during reversal learning in 9-month-old females and during radial arm maze testing in 12-month-old females. In contrast to behaviour, we detected a large number of protein changes related to prior binge-drinking history, several of which manifested as early as 6 months of age, with the prefrontal cortex particularly affected at this earlier age. While 6-month-old mice exhibited relatively few alcohol-related protein changes within the entorhinal cortex and amygdala, the number of alcohol-related protein changes within the entorhinal cortex increased with age, while the 12-month-old mice exhibited the largest number of protein changes within the amygdala. Approximately a third of the alcohol-related protein changes were sex-selective. Taken together, the results of our longitudinal study using a murine model of binge-drinking indicate that a prior history of heavy alcohol consumption, beginning in adolescence, is sufficient to induce what we presume to be latent changes in protein indices of cellular activity, glutamate transmission and neuropathology within key brain regions governing cognition, executive function and emotion that appear to precede the onset of robust behavioural signs of dysregulated affect and cognitive impairment.
Collapse
Affiliation(s)
- C. Leonardo Jimenez Chavez
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Gavin P. Scheldrup
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Lauren E. Madory
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Christopher J. E. Denning
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Edward C. Lee
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Dylan T. Nguyen
- Department of Molecular, Cellular and Developmental BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Marian Castro
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Andrew Garcia
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jose Torres‐Gonzales
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jessica N. Herbert
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Daniel Kotlyar
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Neda Riazat
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - William Pakter
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - William Le
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Eliyanna Van Doren
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Marianna Ter Galstian
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Karen K. Szumlinski
- Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Molecular, Cellular and Developmental BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Neuroscience Research InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Center for Aging and Longevity StudiesUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
3
|
Denning CJE, Madory LE, Herbert JN, Cabrera RA, Szumlinski KK. Neuropharmacological Evidence Implicating Drug-Induced Glutamate Receptor Dysfunction in Affective and Cognitive Sequelae of Subchronic Methamphetamine Self-Administration in Mice. Int J Mol Sci 2024; 25:1928. [PMID: 38339206 PMCID: PMC10856401 DOI: 10.3390/ijms25031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.
Collapse
Affiliation(s)
- Christopher J. E. Denning
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Ryan A. Cabrera
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Szumlinski KK, Herbert JN, Mejia Espinoza B, Madory LE, Scudder SL. Alcohol-drinking during later life by C57BL/6J mice induces sex- and age-dependent changes in hippocampal and prefrontal cortex expression of glutamate receptors and neuropathology markers. ADDICTION NEUROSCIENCE 2023; 7:100099. [PMID: 37396410 PMCID: PMC10310297 DOI: 10.1016/j.addicn.2023.100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heavy drinking can induce early-onset dementia and increase the likelihood of the progression and severity of Alzheimer's Disease and related dementias (ADRD). Recently, we showed that alcohol-drinking by mature adult C57BL/6J mice induces more signs of cognitive impairment in females versus males without worsening age-related cognitive decline in aged mice. Here, we immunoblotted for glutamate receptors and protein markers of ADRD-related neuropathology within the hippocampus and prefrontal cortex (PFC) of these mice after three weeks of alcohol withdrawal to determine protein correlates of alcohol-induced cognitive decline. Irrespective of alcohol history, age-related changes in protein expression included a male-specific decline in hippocampal glutamate receptors and an increase in the expression of a beta-site amyloid precursor protein cleaving enzyme (BACE) isoform in the PFC as well as a sex-independent increase in hippocampal amyloid precursor protein. Alcohol-drinking was associated with altered expression of glutamate receptors in the hippocampus in a sex-dependent manner, while all glutamate receptor proteins exhibited significant alcohol-related increases in the PFC of both sexes. Expression of BACE isoforms and phosphorylated tau varied in the PFC and hippocampus based on age, sex, and drinking history. The results of this study indicate that withdrawal from a history of alcohol-drinking during later life induces sex- and age-selective effects on glutamate receptor expression and protein markers of ADRD-related neuropathology within the hippocampus and PFC of potential relevance to the etiology, treatment and prevention of alcohol-induced dementia and Alzheimer's Disease.
Collapse
Affiliation(s)
- Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Brenda Mejia Espinoza
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Samantha L. Scudder
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Psychology, California State University Dominguez Hills, Carson, CA 90747, USA
| |
Collapse
|