1
|
Binan L, Jiang A, Danquah SA, Valakh V, Simonton B, Bezney J, Manguso RT, Yates KB, Nehme R, Cleary B, Farhi SL. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 2025:S0092-8674(25)00197-7. [PMID: 40081369 DOI: 10.1016/j.cell.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but they have not yet leveraged the power of highly plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present a combination of imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs (Perturb-FISH). Perturb-FISH recovers intracellular effects that are consistent with single-cell RNA-sequencing-based readouts of perturbation effects (Perturb-seq) in a screen of lipopolysaccharide response in cultured monocytes, and it uncovers intercellular and density-dependent regulation of the innate immune response. Similarly, in three-dimensional xenograft models, Perturb-FISH identifies tumor-immune interactions altered by genetic knockout. When paired with a functional readout in a separate screen of autism spectrum disorder risk genes in human-induced pluripotent stem cell (hIPSC) astrocytes, Perturb-FISH shows common calcium activity phenotypes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a general method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.
Collapse
Affiliation(s)
- Loϊc Binan
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aiping Jiang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Serwah A Danquah
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vera Valakh
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brooke Simonton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jon Bezney
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert T Manguso
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen B Yates
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Haddad S, Hessenberger M, Ablinger C, Eibl C, Stanika R, Campiglio M, Obermair GJ. Autism-Linked Mutations in α 2δ-1 and α 2δ-3 Reduce Protein Membrane Expression but Affect Neither Calcium Channels nor Trans-Synaptic Signaling. Pharmaceuticals (Basel) 2024; 17:1608. [PMID: 39770450 PMCID: PMC11677996 DOI: 10.3390/ph17121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND α2δ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for α2δ-1) and CACNA2D3 (coding for α2δ-3) genes were identified in patients with autism spectrum disorder (ASD). However, the pathogenicity of these variants is not known, and the molecular mechanism by which α2δ proteins may contribute to the pathophysiology of autism is, as of today, not understood. Therefore, in this study we functionally characterized two heterozygous missense variants in α2δ-1 (p.R351T) and α2δ-3 (p.A275T), previously identified in patients with ASD. METHODS Electrophysiological recordings in transfected tsA201 cells were used to study specific channel-dependent functions of mutated α2δ proteins. Membrane expression, presynaptic targeting, and trans-synaptic signaling of mutated α2δ proteins were studied upon expression in murine cultured hippocampal neurons. RESULTS Homologous expression of both mutated α2δ proteins revealed a strongly reduced membrane expression and synaptic localization compared to the corresponding wild type α2δ proteins. Moreover, the A275T mutation in α2δ-3 resulted in an altered glycosylation pattern upon heterologous expression. However, neither of the mutations compromised the biophysical properties of postsynaptic L-type (CaV1.2 and CaV1.3) and presynaptic P/Q-type (CaV2.1) channels when co-expressed in tsA201 cells. Furthermore, presynaptic expression of p.R351T in the α2δ-1 splice variant lacking exon 23 did not affect trans-synaptic signaling to postsynaptic GABAA receptors. CONCLUSIONS Our data provide evidence that the pathophysiological mechanisms of ASD-causing mutations of α2δ proteins may not involve their classical channel-dependent and trans-synaptic functions. Alternatively, these mutations may induce subtle changes in synapse formation or neuronal network function, highlighting the need for future α2δ protein-linked disease models.
Collapse
Affiliation(s)
- Sabrin Haddad
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Manuel Hessenberger
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Cornelia Ablinger
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clarissa Eibl
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Ruslan Stanika
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gerald J. Obermair
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| |
Collapse
|
3
|
Cunningham JL, Frankovich J, Dubin RA, Pedrosa E, Baykara RN, Schlenk NC, Maqbool SB, Dolstra H, Marino J, Edinger J, Shea JM, Laje G, Swagemakers SMA, Sinnadurai S, Zhang ZD, Lin JR, van der Spek PJ, Lachman HM. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders. Dev Neurosci 2024:1-20. [PMID: 39396515 DOI: 10.1159/000541908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. METHODS We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children. RESULTS The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. CONCLUSION These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Rheumatology and Immune Behavioral Health Program, Stanford Children's Health and Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert A Dubin
- Center for Epigenomics, Computational Genomics Core, Albert Einstein College of Medicine, New York, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Noelle Cathleen Schlenk
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shahina B Maqbool
- Department of Genetics Epigenetics Shared Facility, Albert Einstein College of Medicine, New York, New York, USA
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacqueline Marino
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacob Edinger
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Julia M Shea
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Gonzalo Laje
- Department of Psychiatry, Permian Basin, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Siamala Sinnadurai
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology and Health Promotion at the School of Public Health Medical Center for Postgraduate Education, Warsaw, Poland
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Binan L, Danquah S, Valakh V, Simonton B, Bezney J, Nehme R, Cleary B, Farhi SL. Simultaneous CRISPR screening and spatial transcriptomics reveals intracellular, intercellular, and functional transcriptional circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569494. [PMID: 38076932 PMCID: PMC10705493 DOI: 10.1101/2023.11.30.569494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but have not yet leveraged the power of highly-plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present Perturb-FISH, which bridges these approaches by combining imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs. We show that Perturb-FISH recovers intracellular effects that are consistent with Perturb-seq results in a screen of lipopolysaccharide response in cultured monocytes, and uncover new intercellular and density-dependent regulation of the innate immune response. We further pair Perturb-FISH with a functional readout in a screen of autism spectrum disorder risk genes, showing common calcium activity phenotypes in induced pluripotent stem cell derived astrocytes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a generally applicable method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.
Collapse
Affiliation(s)
- Loϊc Binan
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Serwah Danquah
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vera Valakh
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brooke Simonton
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. (Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA)
| | - Jon Bezney
- Present address: Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. (Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA)
| | - Ralda Nehme
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Program in Bioinformatics, Boston University, Boston, MA, USA; Biological Design Center, Boston University, Boston, MA, USA
| | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Stringer RN, Cmarko L, Zamponi GW, De Waard M, Weiss N. Electrophysiological characterization of a Ca v3.2 calcium channel missense variant associated with epilepsy and hearing loss. Mol Brain 2023; 16:68. [PMID: 37735453 PMCID: PMC10515227 DOI: 10.1186/s13041-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
T-type calcium channelopathies encompass a group of human disorders either caused or exacerbated by mutations in the genes encoding different T-type calcium channels. Recently, a new heterozygous missense mutation in the CACNA1H gene that encodes the Cav3.2 T-type calcium channel was reported in a patient presenting with epilepsy and hearing loss-apparently the first CACNA1H mutation to be associated with a sensorineural hearing condition. This mutation leads to the substitution of an arginine at position 132 with a histidine (R132H) in the proximal extracellular end of the second transmembrane helix of Cav3.2. In this study, we report the electrophysiological characterization of this new variant using whole-cell patch clamp recordings in tsA-201 cells. Our data reveal minor gating alterations of the channel evidenced by a mild increase of the T-type current density and slower recovery from inactivation, as well as an enhanced sensitivity of the channel to external pH change. To what extend these biophysical changes and pH sensitivity alterations induced by the R132H mutation contribute to the observed pathogenicity remains an open question that will necessitate the analysis of additional CACNA1H variants associated with the same pathologies.
Collapse
Affiliation(s)
- Robin N Stringer
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Leos Cmarko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michel De Waard
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Wang J, Gao Y, Xiao L, Lin Y, Huang L, Chen J, Liang G, Li W, Yi W, Lao J, Zhang B, Gao TM, Zhong M, Yang X. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice. iScience 2023; 26:107476. [PMID: 37599823 PMCID: PMC10433130 DOI: 10.1016/j.isci.2023.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations of the GABA-A receptor subunit β1 (GABRB1) gene are found in autism patients. However, it remains unclear how mutations in Gabrb1 may lead to autism. We generated Gabrb1-/- mouse model, which showed autistic-like behaviors. We carried out RNA-seq on the hippocampus and found glutamatergic pathway may be involved. We further carried out single-cell RNA sequencing on the whole brain followed by qRT-PCR, immunofluorescence, electrophysiology, and metabolite detection on specific cell types. We identified the up-regulated Glul/Slc38a3 in astrocytes, Grin1/Grin2b in neurons, glutamate, and the ratio of Glu/GABA in the hippocampus. Consistent with these results, increased NMDAR-currents and reduced GABAAR-currents in the CA1 neurons were detected in Gabrb1-/- mice. NMDAR antagonist memantine or Glul inhibitor methionine sulfoximine could rescue the abnormal behaviors in Gabrb1-/- mice. Our data reveal that upregulation of the glutamatergic synapse pathway, including NMDARs at neuronal synapses and glutamine exported by astrocytes, may lead to autistic-like behaviors.
Collapse
Affiliation(s)
- Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liuyan Xiao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Lin
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinfa Chen
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanmei Liang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiming Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianpei Lao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Genetic ablation of metabotropic glutamate receptor 5 in rats results in an autism-like behavioral phenotype. PLoS One 2022; 17:e0275937. [PMCID: PMC9668160 DOI: 10.1371/journal.pone.0275937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, and social skills, as well as repetitive and/or restrictive interests and behaviors. The severity of ASD varies from mild to severe, drastically interfering with the quality of life of affected individuals. The current occurrence of ASD in the United States is about 1 in 44 children. The precise pathophysiology of ASD is still unknown, but it is believed that ASD is heterogeneous and can arise due to genetic etiology. Although various genes have been implicated in predisposition to ASD, metabotropic glutamate receptor 5 (mGluR5) is one of the most common downstream targets, which may be involved in autism. mGluR5 signaling has been shown to play a crucial role in neurodevelopment and neural transmission making it a very attractive target for understanding the pathogenesis of ASD. In the present study, we determined the effect of genetic ablation of mGluR5 (Grm5) on an ASD-like phenotype using a rat model to better understand the role of mGluR5 signaling in behavior patterns and clinical manifestations of ASD. We observed that mGluR5 Ko rats exhibited exaggerated self-grooming and increased marble burying, as well as deficits in social novelty. Our results suggest that mGluR5 Ko rats demonstrate an ASD-like phenotype, specifically impaired social interaction as well as repetitive and anxiety-like behavior, which are correlates of behavior symptoms observed in individuals with ASD. The mGluR5 Ko rat model characterized in this study may be explored to understand the molecular mechanisms underlying ASD and for developing effective therapeutic modalities.
Collapse
|