1
|
Kepinska O, Bouhali F, Degano G, Berthele R, Tanaka H, Hoeft F, Golestani N. Intergenerational transmission of the structure of the auditory cortex and reading skills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.610780. [PMID: 39314393 PMCID: PMC11419080 DOI: 10.1101/2024.09.11.610780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
High-level cognitive skill development relies on genetic and environmental factors, tied to brain structure and function. Inter-individual variability in language and music skills has been repeatedly associated with the structure of the auditory cortex: the shape, size and asymmetry of the transverse temporal gyrus (TTG) or gyri (TTGs). TTG is highly variable in shape and size, some individuals having one single gyrus (also referred to as Heschl's gyrus, HG) while others presenting duplications (with a common stem or fully separated) or higher-order multiplications of TTG. Both genetic and environmental influences on children's cognition, behavior, and brain can to some to degree be traced back to familial and parental factors. In the current study, using a unique MRI dataset of parents and children (135 individuals from 37 families), we ask whether the anatomy of the auditory cortex is related to reading skills, and whether there are intergenerational effects on TTG(s) anatomy. For this, we performed detailed, automatic segmentations of HG and of additional TTG(s), when present, extracting volume, surface area, thickness and shape of the gyri. We tested for relationships between these and reading skill, and assessed their degree of familial similarity and intergenerational transmission effects. We found that volume and area of all identified left TTG(s) combined was positively related to reading scores, both in children and adults. With respect to intergenerational similarities in the structure of the auditory cortex, we identified structural brain similarities for parent-child pairs of the 1st TTG (Heschl's gyrus, HG) (in terms of volume, area and thickness for the right HG, and shape for the left HG) and of the lateralization of all TTG(s) surface area for father-child pairs. Both the HG and TTG-lateralization findings were significantly more likely for parent-child dyads than for unrelated adult-child pairs. Furthermore, we established characteristics of parents' TTG that are related to better reading abilities in children: fathers' small left HG, and a small ratio of HG to planum temporale. Our results suggest intergenerational transmission of specific structural features of the auditory cortex; these may arise from genetics and/or from shared environment.
Collapse
Affiliation(s)
- Olga Kepinska
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Giulio Degano
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Raphael Berthele
- Institute of Multilingualism, University of Fribourg, Fribourg, Switzerland
| | - Hiroko Tanaka
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, USA
- Banner University Medical Center - Tucson, Tucson, AZ, USA
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, USA
- Departments of Mathematics, Neuroscience, Psychiatry, Educational Psychology, Pediatrics, Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Narly Golestani
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Ait Bentaleb K, Boisvert M, Tourjman V, Potvin S. A Meta-Analysis of Functional Neuroimaging Studies of Ketamine Administration in Healthy Volunteers. J Psychoactive Drugs 2024; 56:211-224. [PMID: 36921026 DOI: 10.1080/02791072.2023.2190758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Ketamine administration leads to a psychotomimetic state when taken in large bolus doses, making it a valid model of psychosis. Therefore, understanding ketamine's effects on brain functioning is particularly relevant. This meta-analysis focused on neuroimaging studies that examined ketamine-induced brain activation at rest and during a task. Included are 10 resting-state studies and 23 task-based studies, 9 of which were measuring executive functions. Using a stringent statistical threshold (TFCE <0.05), the results showed increased activity at rest in the dorsal anterior cingulate cortex (ACC), and increased activation of the right Heschl's gyrus during executive tasks, following ketamine administration. Uncorrected results showed increased activation at rest in the right (anterior) insula and the right-fusiform gyrus, as well as increased activation during executive tasks in the rostral ACC. Rest-state studies highlighted alterations in core hubs of the salience network, while task-based studies suggested an impact on task-irrelevant brain regions. Increased activation in the rostral ACC may indicate a failure to deactivate the default mode network during executive tasks following ketamine administration. The results are coherent with alterations found in schizophrenia, which confer external validity to the ketamine model of psychosis. Studies investigating the neural mechanisms of ketamine's antidepressant action are warranted.
Collapse
Affiliation(s)
- Karim Ait Bentaleb
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Valérie Tourjman
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| |
Collapse
|
3
|
Türk Y, Devecioğlu İ, Küskün A, Öge C, Beyazyüz E, Albayrak Y. ROI-based analysis of diffusion indices in healthy subjects and subjects with deficit or non-deficit syndrome schizophrenia. Psychiatry Res Neuroimaging 2023; 336:111726. [PMID: 37925764 DOI: 10.1016/j.pscychresns.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
We analyzed DTI data involving 22 healthy subjects (HC), 15 patients with deficit syndrome schizophrenia (DSZ), and 25 patients with non-deficit syndrome schizophrenia (NDSZ). We used a 1.5-T MRI scanner to collect diffusion-weighted images and T1 images, which were employed to correct distortions and deformations within the diffusion-weighted images. For 156 regions of interest (ROI), we calculated the average fractional anisotropy (FA), mean diffusion (MD), and radial diffusion (RD). Each ROI underwent a group-wise comparison using permutation F-test, followed by post hoc pairwise comparisons with Bonferroni correction. In general, we observed lower FA in both schizophrenia groups compared to HC (i.e., HC>(DSZ=NDSZ)), while MD and RD showed the opposite pattern. Notably, specific ROIs with reduced FA in schizophrenia patients included bilateral nucleus accumbens, left fusiform area, brain stem, anterior corpus callosum, left rostral and caudal anterior cingulate, right posterior cingulate, left thalamus, left hippocampus, left inferior temporal cortex, right superior temporal cortex, left pars triangularis and right lingual gyrus. Significantly, the right cuneus exhibited lower FA in the DSZ group compared to other groups ((HC=NDSZ)>DSZ), without affecting MD and RD. These results indicate that compromised neural integrity in the cuneus may contribute to the pathophysiological distinctions between DSZ and NDSZ.
Collapse
Affiliation(s)
- Yaşar Türk
- Radiology Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey; Radiology Department, İstanbul Health and Technology University Hospital, Kaptanpasa Mh., Darulaceze Cd., Sisli, İstanbul 34384, Turkey
| | - İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University, NKU Corlu Muhendislik Fakultesi, Silahtaraga Mh., Çorlu, Tekirdağ 59860, Turkey.
| | - Atakan Küskün
- Radiology Department, Medical Faculty, Kırklareli University, Cumhuriyet Mh., Kofcaz Yolu, Kayali Yerleskesi, Merkezi Derslikler 2, No 39/L, Merkez, Kırklareli, Turkey
| | - Cem Öge
- Psychiatry Department, Çorlu State Hospital, Zafer, Mah. Bülent Ecevit Blv. No:33, Çorlu, Tekirdağ 59850, Turkey
| | - Elmas Beyazyüz
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| | - Yakup Albayrak
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| |
Collapse
|
4
|
da Rocha JLD, Kepinska O, Schneider P, Benner J, Degano G, Schneider L, Golestani N. Multivariate Concavity Amplitude Index (MCAI) for characterizing Heschl's gyrus shape. Neuroimage 2023; 272:120052. [PMID: 36965861 DOI: 10.1016/j.neuroimage.2023.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Heschl's gyrus (HG), which includes primary auditory cortex, is highly variable in its shape (i.e. gyrification patterns), between hemispheres and across individuals. Differences in HG shape have been observed in the context of phonetic learning skill and expertise, and of professional musicianship, among others. Two of the most common configurations of HG include single HG, where a single transverse temporal gyrus is present, and common stem duplications (CSD), where a sulcus intermedius (SI) arises from the lateral aspect of HG. Here we describe a new toolbox, called 'Multivariate Concavity Amplitude Index' (MCAI), which automatically assesses the shape of HG. MCAI works on the output of TASH, our first toolbox which automatically segments HG, and computes continuous indices of concavity, which arise when sulci are present, along the outer perimeter of an inflated representation of HG, in a directional manner. Thus, MCAI provides a multivariate measure of shape, which is reproducible and sensitive to small variations in shape. We applied MCAI to structural magnetic resonance imaging (MRI) data of N=181 participants, including professional and amateur musicians and from non-musicians. Former studies have shown large variations in HG shape in the former groups. We validated MCAI by showing high correlations between the dominant (i.e. highest) lateral concavity values and continuous visual assessments of the degree of lateral gyrification of the first gyrus. As an application of MCAI, we also replicated previous visually obtained findings showing a higher likelihood of bilateral CSDs in musicians. MCAI opens a wide range of applications in evaluating HG shape in the context of individual differences, expertise, disorder and genetics.
Collapse
Affiliation(s)
- Josué Luiz Dalboni da Rocha
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, USA; Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland.
| | - Olga Kepinska
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Peter Schneider
- Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany; Centre for Systematic Musicology, University of Graz, Graz, Austria; Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Jan Benner
- Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany
| | - Giulio Degano
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Letitia Schneider
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Narly Golestani
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland; Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria; Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Takahashi T, Sasabayashi D, Wood SJ, McGorry PD, Suzuki M, Velakoulis D, Pantelis C. Increased prevalence of the Heschl's gyrus duplication pattern common to various first-episode psychoses. Schizophr Res 2023; 252:36-38. [PMID: 36621325 DOI: 10.1016/j.schres.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Stephen J Wood
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; School of Psychology, University of Birmingham, Birmingham, UK
| | - Patrick D McGorry
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton, South Victoria, Australia; Neuropsychiatry, Royal Melbourne Hospital, Melbourne Health, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton, South Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; North Western Mental Health, Western Hospital Sunshine, St Albans, Victoria, Australia
| |
Collapse
|
6
|
Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kobayashi H, Yuasa Y, Noguchi K, Suzuki M. Gross anatomical features of the insular cortex in schizophrenia and schizotypal personality disorder: Potential relationships with vulnerability, illness stages, and clinical subtypes. Front Psychiatry 2022; 13:1050712. [PMID: 36465304 PMCID: PMC9715601 DOI: 10.3389/fpsyt.2022.1050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients with schizophrenia have a higher number of insular gyri; however, it currently remains unclear whether the brain characteristics of patients with schizotypal personality disorder (SPD), a mild form of schizophrenia, are similar. It is also unknown whether insular gross anatomical features are associated with the illness stages and clinical subtypes of schizophrenia. Materials and methods This magnetic resonance imaging study examined gross anatomical variations in the insular cortex of 133 patients with schizophrenia, 47 with SPD, and 88 healthy controls. The relationships between the insular gross anatomy and schizophrenia subgroups (71 first-episode and 58 chronic groups, 38 deficit and 37 non-deficit subtype groups) were also investigated. Results The number of insular gyri was higher in the schizophrenia and SPD patients than in the controls, where the patients were characterized by well-developed accessory, middle short, and posterior long insular gyri. The insular gross anatomy did not significantly differ between the first-episode and chronic schizophrenia subgroups; however, the relationship between the developed accessory gyrus and more severe positive symptoms was specific to the first-episode group. The prevalence of a right middle short gyrus was higher in the deficit schizophrenia group than in the non-deficit group. Discussion These findings suggest that schizophrenia and SPD patients may share an altered insular gross morphology as a vulnerability factor associated with early neurodevelopmental anomalies, which may also contribute to positive symptomatology in the early illness stages and clinical subtypes of schizophrenia.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Arisawabashi Hospital, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yusuke Yuasa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Takahashi T, Sasabayashi D, Velakoulis D, Suzuki M, McGorry PD, Pantelis C, Chanen AM. Heschl's gyrus duplication pattern and clinical characteristics in borderline personality disorder: A preliminary study. Front Psychiatry 2022; 13:1033918. [PMID: 36405909 PMCID: PMC9669378 DOI: 10.3389/fpsyt.2022.1033918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Inter-individual variations in the sulco-gyral pattern of Heschl's gyrus (HG) might contribute to emotional processing. However, it remains largely unknown whether borderline personality disorder (BPD) patients exhibit an altered HG gyrification pattern, compared with healthy individuals, and whether such a brain morphological feature, if present, might contribute to their clinical characteristics. The present study used magnetic resonance imaging to investigate the distribution of HG gyrification patterns (single or duplicated) and their relationship to clinical characteristics in teenage BPD patients with minimal treatment exposure. No significant difference was noted for the prevalence of HG patterns between 20 BPD and 20 healthy participants. However, the BPD participants with left duplicated HG were characterized by higher prevalence of comorbid disruptive behavior disorders, with higher externalizing score compared with those with left single HG. Our preliminary results suggest that neurodevelopmental pathology associated with gyral formation might be implicated in the neurobiology of early BPD, especially for emotional and behavioral control.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Dennis Velakoulis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia.,Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Health, Melbourne, VIC, Australia
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Patrick D McGorry
- Orygen, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,North Western Mental Health, Western Hospital Sunshine, St Albans, VIC, Australia
| | - Andrew M Chanen
- Orygen, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|