1
|
Sihn D, Kim SP. Enhanced Correlation between Arousal and Infra-Slow Brain Activity in Experienced Meditators. Brain Sci 2024; 14:981. [PMID: 39451995 PMCID: PMC11506050 DOI: 10.3390/brainsci14100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Meditation induces changes in the nervous system, which presumably underpin positive psychological and physiological effects. Such neural changes include alterations in the arousal fluctuation, as well as in infraslow brain activity (ISA, <0.1 Hz). Furthermore, it is known that fluctuations of arousal over time correlate with the oscillatory phase of ISA. However, whether this arousal-ISA correlation changes after meditation practices remains unanswered.; Methods: The present study aims to address this question by analyzing a publicly available electroencephalogram (EEG) dataset recorded during meditation sessions in the groups of experienced meditators and novices. The arousal fluctuation is measured by galvanic skin responses (GSR), and arousal-ISA correlations are measured by phase synchronization between GSR and EEG ISAs.; Results: While both groups exhibit arousal-ISA correlations, experienced meditators display higher correlations than novices. These increased arousal-ISA correlations in experienced meditators manifest more clearly when oscillatory phase differences between GSR and EEG ISAs are either 0 or π radians. As such, we further investigate the characteristics of these phase differences with respect to spatial distribution over the brain. We found that brain regions with the phase difference of either 0 or π radians form distinct spatial clusters, and that these clusters are spatially correlated with functional organization estimated by the principal gradient, based on functional connectivity.; Conclusions: Since increased arousal-ISA correlations reflect enhanced global organization of the central and autonomic nervous systems, our findings imply that the positive effects of meditation might be mediated by enhanced global organization of the nervous system.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Sihn D, Kim J, Kim SP. Meditation-type specific reduction in infra-slow activity of electroencephalogram. Biomed Eng Lett 2024; 14:823-831. [PMID: 38946818 PMCID: PMC11208365 DOI: 10.1007/s13534-024-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Meditation is renowned for its positive effects on cognitive abilities and stress reduction. It has been reported that the amplitude of electroencephalographic (EEG) infra-slow activity (ISA, < 0.1 Hz) is reduced as the stress level decreases. Consequently, we aimed to determine if EEG ISA amplitude decreases as a result of meditation practice across various traditions. Methods To this end, we analyzed an open dataset comprising EEG data acquired during meditation sessions from experienced practitioners in the Vipassana tradition-which integrates elements of focused attention and open monitoring, akin to mindfulness meditation-and in the Himalayan Yoga and Isha Shoonya traditions, which emphasize focused attention and open monitoring, respectively. Results A general trend was observed where EEG ISA amplitude tended to decrease in experienced meditators from these traditions compared to novices, particularly significant in the 0.03-0.08 Hz band for Vipassana meditators. Therefore, our analysis focused on this ISA frequency band. Specifically, a notable decrease in EEG ISA amplitude was observed in Vipassana meditators, predominantly in the left-frontal region. This reduction in EEG ISA amplitude was also accompanied by a decrease in phase-amplitude coupling (PAC) between the ISA phase and alpha band (8-12 Hz) amplitude, which implied decreased neural excitability fluctuations. Conclusion Our findings suggest that not only does EEG ISA amplitude decrease in experienced meditators from traditions that incorporate both focused attention and open monitoring, but this decrease may also signify a diminished influence of neural excitability fluctuations attributed to ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
3
|
Okumura E, Hoshi H, Morise H, Okumura N, Fukasawa K, Ichikawa S, Asakawa T, Shigihara Y. Reliability of Spectral Features of Resting-State Brain Activity: A Magnetoencephalography Study. Cureus 2024; 16:e52637. [PMID: 38249648 PMCID: PMC10799710 DOI: 10.7759/cureus.52637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 01/23/2024] Open
Abstract
Background Cognition is a vital sign and its deterioration is a major concern in clinical medicine. It is usually evaluated using neuropsychological assessments, which have innate limitations such as the practice effect. To compensate for these assessments, the oscillatory power of resting-state brain activity has recently become available. The power is obtained noninvasively using magnetoencephalography and is summarized by spectral parameters such as the median frequency (MF), individual alpha frequency (IAF), spectral edge frequency 95 (SEF95), and Shannon's spectral entropy (SSE). As these parameters are less sensitive to practice effects, they are suitable for longitudinal studies. However, their reliability remains unestablished, hindering their proactive use in clinical practice. Therefore, we aimed to quantify the within-participant reliability of these parameters using repeated measurements of healthy participants to facilitate their clinical use and to evaluate the observed changes/differences in these parameters reported in previous studies. Methodology Resting-state brain activity with eyes closed was recorded using magnetoencephalography for five minutes from 15 healthy individuals (29.3 ± 4.6 years old: ranging from 23 to 28 years old). The following four spectral parameters were calculated: MF, IAF, SEF95, and SSE. To quantify reliability, the minimal detectable change (MDC) and intraclass correlation coefficient (ICC) were computed for each parameter. In addition, we used MDCs to evaluate the changes and differences in the spectral parameters reported in previous longitudinal and cross-sectional studies. Results The MDC at 95% confidence interval (MDC95) of MF, IAF, SEF95, and SSE were 0.61 Hz, 0.44 Hz, 2.91 Hz, and 0.028, respectively. The ICCs of these parameters were 0.96, 0.92, 0.94, and 0.83, respectively. The MDC95 of these parameters was smaller than the mean difference in the parameters between cognitively healthy individuals and patients with dementia, as reported in previous studies. Conclusions The spectral parameter changes/differences observed in prior studies were not attributed to measurement errors but rather reflected genuine effects. Furthermore, all spectral parameters exhibited high ICCs (>0.8), underscoring their robust within-participant reliability. Our results support the clinical use of these parameters, especially in the longitudinal monitoring and evaluation of the outcomes of interventions.
Collapse
Affiliation(s)
- Eiichi Okumura
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN
| | - Hideyuki Hoshi
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN
- Precision Medicine Centre, Hokuto Hospital, Obihiro, JPN
| | - Hirofumi Morise
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN
| | - Naohiro Okumura
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN
| | - Keisuke Fukasawa
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, JPN
| | - Sayuri Ichikawa
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, JPN
| | - Takashi Asakawa
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, JPN
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, JPN
| |
Collapse
|