1
|
Yin Z, Torre E, Marrot M, Peters CH, Feather A, Nichols WG, Logantha SJRJ, Arshad A, Martis SA, Ozturk NT, Chen W, Liu J, Qu J, Zi M, Cartwright EJ, Proenza C, Torrente A, Mangoni ME, Dobrzynski H, Atkinson AJ. Identifying sex similarities and differences in structure and function of the sinoatrial node in the mouse heart. Front Med (Lausanne) 2024; 11:1488478. [PMID: 39703520 PMCID: PMC11655232 DOI: 10.3389/fmed.2024.1488478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Background The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood. This study aimed to elucidate the sex-specific differences in heart morphology and SN function, particularly focusing on basal HR, expression and function of hyperpolarization-activated HCN4 and HCN1 channels and mRNA abundance of ion channels and mRNA abundance of ion channels contributing to diastolic depolarization (DD) and spontaneous action potentials (APs). Methods Body weight, heart weight and tibia length of 2- to 3-month-old male and female mice were measured. Conscious in-vivo HR of male and female mice was recorded via electrocardiography (ECG). Unconscious ex-vivo HR, stroke volume (SV) and ejection fraction (EF) were recorded via echocardiography. Ex-vivo HR was measured via Langendorff apparatus. Volume of atria, ventricles and whole hearts were measured from the ex-vivo hearts by microcomputed tomography (micro-CT). Immunohistochemistry targeting HCN4 and HCN1 was conducted in the SN and RA tissues from both male and female hearts. The funny current (I f) of SN cells in 1 nM and following wash-on of 1 μM isoproterenol (ISO) were recorded via whole cell patch clamp. The APs of SN tissue were recorded via sharp microelectrode and optical mapping of membrane voltage. The relative abundance of mRNAs was measured in male and female mice by qPCR. Results Heart weight to tibia length ratio and heart volume of females were significantly smaller than males. Unconscious in-vivo HR in male mice was higher than that in females. Conscious in-vivo HR, ex-vivo HR, SV, and EF showed no notable difference between male and female mice. Immunohistochemistry revealed HCN4, HCN1, and the sum of HCN4 and HCN1, expression in the SN was notably elevated compared with the RA in both male and females, but there was no sex difference in these channels expression. There were also no significant sex differences in the V 0.5 of I f in SN cells in the presence of 1 nM ISO, however wash-on 1 μM ISO in the same cells induced a significantly increased shift of V 0.5 to more positive voltages in males than in females. The expression of mRNA coding for adrenergic receptor beta-1 (Adrb1) and cholinergic receptors muscarinic 2 (chrm2) in male mice was higher compared with that in female mice. Early diastolic depolarization (EDD) rate in APs from peripheral SN (pSN) from male mice were higher than these in female mice. Mice of both sexes showed equivalent frequency of SN APs and spatial localization of the leading site in control, and similar significant response to ISO 100 nM superfusion. Conclusion Males display faster in-vivo HR, but not ex-vivo HR, than females associated with increased expression of Adrb1 in male versus female. This suggests a possible difference in the β-adrenergic modulation in males and females, possibly related to the greater ISO response of I f observed in cells from males. The role of hormonal influences or differential expression of other ion channels may explain these sex-specific variations in HR dynamics. Further investigations are necessary to pinpoint the precise molecular substrates responsible for these differences.
Collapse
Affiliation(s)
- Zeyuan Yin
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier CNRS, INSERM, Montpellier, France
| | - Manon Marrot
- Institut de Génomique Fonctionnelle, Université de Montpellier CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channels Science and Therapeutics (ICST), Valbonne, France
| | - Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amy Feather
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - William G. Nichols
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sunil Jit R. J. Logantha
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Areej Arshad
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Simran Agnes Martis
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Nilay Tugba Ozturk
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Weixuan Chen
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jiaxuan Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jingmo Qu
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier CNRS, INSERM, Montpellier, France
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier CNRS, INSERM, Montpellier, France
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
De Oliveira Sergio T, Darevsky D, Kellner J, de Paula Soares V, de Cassia Albino M, Maulucci D, Wean S, Hopf FW. Sex- and estrous-related response patterns for alcohol depend critically on the level of compulsion-like challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111008. [PMID: 38641236 PMCID: PMC11423807 DOI: 10.1016/j.pnpbp.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Alcohol use disorder is a substantial social and economic burden. During the last years, the number of women with drinking problems has been increasing, and one main concern is that they are particularly more vulnerable to negative consequences of alcohol. However, little is known about female-specific response patterns for alcohol, and potential underlying differences in brain mechanisms, including for compulsion-like alcohol drinking (when intake persists despite adverse consequences). We used lickometry to assess behavioral microstructure in adult Wistar male and female rats (n = 28-30) during alcohol-only drinking or moderate- or higher-challenge alcohol compulsion (10 or 60 mg/l quinine in alcohol, respectively). Estrous stages were determined and related to drinking levels and patterns of responding to alcohol, as was ovariectomy. Our findings showed that females (where we didn't determine estrus stage) had similar total licks in a session as males, but significantly longer licking bouts under alcohol-only and moderate-challenge, suggesting greater persistence. Further, greater intake under alcohol-only and moderate-challenge was related to faster licking in males, while female consumption was not related to licking speed. Thus, females could have increased persistence without greater vigor, unlike males. However, under higher-challenge, faster licking did predict higher intake in females, similar to males. To better understand female higher-challenge responding, we examined drinking in relation to phases of the estrous cycle. Higher-challenge had longer bouts only in late diestrus. In addition, ovariectomy led to longer bouts only under higher-challenge, suggesting that conditions with reduced hormone levels could increase female persistence for alcohol under higher-challenge. However, ovariectomy also reduced alcohol-only and moderate-challenge drinking but did not reduce bout length. Thus, intake level and response strategy could be regulated somewhat differently by ovarian hormones. Finally, moderate-challenge licking speed was less variable during early diestrus, and we previously showed more stereotyped responding specifically under moderate-challenge in males. By combining behavioral microstructure and sex- and estrus-related changes in drinking patterns, our results suggest that females have greater persistence for alcohol under lower-challenge drinking, while late diestrus and ovariectomy unmasked greater persistence under higher-challenge. Together, our novel insights could help develop more effective and personalized treatments for problematic alcohol use.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - David Darevsky
- University of California at Berkeley-UCSF Graduate Program in Bioengineering, USA; UCSF Medical Scientist Training Program, San Francisco, CA, USA
| | - Jacob Kellner
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cassia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Sarah Wean
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Frasier RM, Starski PA, de Oliveira Sergio T, Grippo AJ, Hopf FW. Sex differences in heart rate variability measures that predict alcohol drinking in rats. Addict Biol 2024; 29:e13387. [PMID: 38502109 PMCID: PMC11061848 DOI: 10.1111/adb.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Problem alcohol drinking continues to be a substantial cost and burden. In addition, alcohol consumption in women has increased in recent decades, and women can have greater alcohol problems and comorbidities. Thus, there is a significant need for novel therapeutics to enhance sex-specific, individualized treatment. Heart rate (HR) and HR variability (HRV) are of broad interest because they may be both biomarkers for and drivers of pathological states. HRV reflects the dynamic balance between sympathetic (SNS, 'fight or flight') and parasympathetic (PNS, 'rest and digest') systems. Evidence from human studies suggest PNS predominance in women and SNS in men during autonomic regulation, indicating the possibility of sex differences in risk factors and physiological drivers of problem drinking. To better understand the association between HRV sex differences and alcohol drinking, we examined whether alcohol consumption levels correlated with time domain HRV measures (SDNN and rMSSD) at baseline, at alcohol drinking onset, and across 10 min of drinking, in adult female and male Wistar rats. In particular, we compared both HRV and HR measures under alcohol-only and compulsion-like conditions (alcohol + 10 mg/L quinine), because compulsion can often be a significant barrier to treatment of alcohol misuse. Importantly, previous work supports the possibility that different HRV measures could be interpreted to reflect PNS versus SNS influences. Here, we show that females with higher putative PNS indicators at baseline and at drinking onset had greater alcohol consumption. In contrast, male intake levels related to increased potential SNS measures at drinking onset. Once alcohol was consumed, HR predicted intake level in females, perhaps a pharmacological effect of alcohol. However, HRV changes were greater during compulsion-like intake versus alcohol-only, suggesting HRV changes (reduced SNS in females, reduced PNS and increased HR in males) specifically related to aversion-resistant intake. We find novel and likely clinically relevant autonomic differences associated with biological sex and alcohol drinking, suggesting that different autonomic mechanisms may promote differing aspects of female and male alcohol consumption.
Collapse
Affiliation(s)
- Raizel M. Frasier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Scientist Training ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| | - Phillip A. Starski
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Angela J. Grippo
- Department of PsychologyNorthern Illinois UniversityDeKalbIllinoisUSA
| | - F. Woodward Hopf
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
4
|
Stallkamp Tidd SJ, Nowacki AS, Singh T, Hayburn A, Wilson R. Comorbid anxiety is associated with more changes in the Management of Postural Orthostatic Tachycardia Syndrome. Gen Hosp Psychiatry 2024; 87:1-6. [PMID: 38224642 DOI: 10.1016/j.genhosppsych.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE Postural Orthostatic Tachycardia Syndrome (POTS) is not an anxiety disorder, but it shares similar symptomatology. The impact of this comorbidity on management is unknown. This information may lead to better strategies to improve the care of this subgroup. METHOD The electronic medical records of 322 patients seen at our institution between 2018 and 2022 with confirmed POTS diagnoses were analyzed. Demographics, anxiety comorbidities, questionnaire responses, and treatment course changes were collected. Negative binomial regression models examined if the presence of an anxiety disorder was associated with the number of POTS treatment course changes offset by observation time. RESULTS When adjusted for sex, age, baseline GAD-7 score, and baseline PROMIS global mental health score, those with a diagnosis of an anxiety disorder had2.6 times the incident rate of treatment changes for POTS management (IRR = 2.66 (95% CI: 1.43-4.95)). CONCLUSION Individuals carrying the diagnosis of an anxiety disorder had an increase in the incident rate of treatment changes for POTS therapy. This finding may be due to the underlying pathophysiology and treatment of anxiety disorders, the effect of bias, and difficulty with symptom differentiation. More work needs to be done to determine how to best care for POTS patients with comorbid anxiety.
Collapse
Affiliation(s)
| | - Amy S Nowacki
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tamanna Singh
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anna Hayburn
- Department of Neuromuscular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert Wilson
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Department of Neuromuscular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|