1
|
Lazzaro G, Passarini S, Battisti A, Costanzo F, Garone G, Mercier M, D'Aiello B, De Rossi P, Valeri G, Guerrera S, Casula L, Menghini D, Vicari S, Fucà E. Understanding and targeting repetitive behaviors and restricted interests in autism spectrum disorder via high-definition transcranial direct current stimulation: a study-protocol. BMC Psychiatry 2025; 25:170. [PMID: 40001028 PMCID: PMC11863796 DOI: 10.1186/s12888-025-06506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social interaction and repetitive behaviors (RBs). Therapies specifically targeting RBs have been underexplored despite advances in understanding their neurobiological basis. This study aims to evaluate whether high-definition transcranial direct current stimulation (HD-tDCS) can reduce dysfunctional RBs in autistic children and investigate whether improvements differ between lower-order and higher-order RBs based on the brain regions stimulated. METHODS The study entails a multi-session, sham-controlled, site-controlled, double-blind, and between-subjects design. The study will include participants with an ASD diagnosis (aged 8-13 years; IQ ≥ 70), who will undergo the HD-tDCS intervention for 10 sessions. Participants will be randomly assigned to three conditions: (1) Pre-Motor Active Group (active HD-tDCS over pre-SMA cortex); (2) Frontal Active Group (active HD-tDCS over dlPFC); (3) Placebo Control Group. In the active HD-tDCS conditions, the current will be delivered through a 4 × 1 montage; small circular electrodes will be used with the cathode placed centrally with a current intensity of 0.5 mA for a total of 20 min (30 s ramp up/down) per session. Participants during the sham condition will undergo the same procedures as those in the both active conditions actual placement of electrodes, and turning on the HD-tDCS equipment (30 s). The assessment will be completed at baseline (T0), immediately after the end of the intervention (T1) and 3 months after the end of the intervention (T2). The primary outcome measure will be the Total Score of the Repetitive Behavior Scale-Revised. The secondary outcomes measures will comprise ASD symptoms, sensory processing pattern, emotional/behavioral problems, sleep functioning, parental stress, neuropsychological features and High-Density EEG connectivity. We hypothesize that active HD-tDCS will lead to significant reduction in the total score of the primary outcome compared to Sham Group, with site-specific effects on lower-order and higher-order RBs. DISCUSSION HD-tDCS is an easy-to-deliver, time-efficient, neurobiologically-driven intervention that could be performed as add-on to reduce the time of conventional therapy for ASD. Given the inherent limitations of specific interventions for RBs, tDCS represents an important "third" treatment arm to address the burden of interventions for ASD. TRIAL REGISTRATION DETAILS The trial has been registered at ClinicalTrials.gov (ID: NCT06645587). Registered 17 October 2024.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Passarini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Human Science, LUMSA University, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomo Garone
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mercier
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara D'Aiello
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro De Rossi
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Wilens TE, Stone M, Lanni S, Berger A, Wilson RLH, Lydston M, Surman CB. Treating Executive Function in Youth With Attention Deficit Hyperactivity Disorder: A Review of Pharmacological and Non-Pharmacological Interventions. J Atten Disord 2024; 28:751-790. [PMID: 38178649 DOI: 10.1177/10870547231218925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Executive function (EF) deficits are common in youth with ADHD and pose significant functional impairments. The extent and effect of interventions addressing EF in youth with ADHD remain unclear. METHODS We conducted a systematic literature review using PRISMA guidelines. Included studies were randomized controlled trials of interventions to treat EF in youth with ADHD. RESULTS Our search returned 136 studies representing 11,443 study participants. We identified six intervention categories: nonstimulant pharmacological (N = 3,576 participants), neurological (N = 1,935), psychological (N = 2,387), digital (N = 2,416), physiological (N = 680), and combination (N = 366). The bulk of the evidence supported pharmacological interventions as most effective in mitigating EF, followed by psychological and digital interventions. CONCLUSION A breadth of treatments exists for EF in youth with ADHD. Pharmacological, psychotherapeutic, and digital interventions had the most favorable, replicable outcomes. A lack of outcome standardization across studies limited treatment comparison. More data on the persistence of intervention effects are necessary.
Collapse
Affiliation(s)
- Timothy E Wilens
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mira Stone
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Amy Berger
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Craig B Surman
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life (Basel) 2023; 13:1472. [PMID: 37511847 PMCID: PMC10381462 DOI: 10.3390/life13071472] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroimaging has revolutionized our understanding of brain function and has become an essential tool for researchers studying neurological disorders. Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are two widely used neuroimaging techniques to review changes in brain activity. fMRI is a noninvasive technique that uses magnetic fields and radio waves to produce detailed brain images. An EEG is a noninvasive technique that records the brain's electrical activity through electrodes placed on the scalp. This review overviews recent developments in noninvasive functional neuroimaging methods, including fMRI and EEG. Recent advances in fMRI technology, its application to studying brain function, and the impact of neuroimaging techniques on neuroscience research are discussed. Advances in EEG technology and its applications to analyzing brain function and neural oscillations are also highlighted. In addition, advanced courses in neuroimaging, such as diffusion tensor imaging (DTI) and transcranial electrical stimulation (TES), are described, along with their role in studying brain connectivity, white matter tracts, and potential treatments for schizophrenia and chronic pain. Application. The review concludes by examining neuroimaging studies of neurodevelopmental and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). We also described the role of transcranial direct current stimulation (tDCS) in ASD, ADHD, AD, and PD. Neuroimaging techniques have significantly advanced our understanding of brain function and provided essential insights into neurological disorders. However, further research into noninvasive treatments such as EEG, MRI, and TES is necessary to continue to develop new diagnostic and therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Chia-Li Lin
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|