1
|
Wang S, Huang F, Yan H, Yin J, Xia Z. A review of malaria molecular markers for drug resistance in Plasmodium falciparum and Plasmodium vivax in China. Front Cell Infect Microbiol 2023; 13:1167220. [PMID: 37228664 PMCID: PMC10203619 DOI: 10.3389/fcimb.2023.1167220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
China has now achieved the elimination of malaria, but it still faces severe challenges in the post-elimination stage. China continues to be plagued by imported malaria cases, and preventing re-transmission of imported malaria is critical. The effectiveness of antimalarial drugs for malaria control largely depends on the study of drug resistance markers in vitro. Monitoring molecular markers of parasite-associated drug resistance can help predict and manage drug resistance. There is currently a lack of systematic reviews of molecular markers for indigenous and imported malaria in China. Therefore, this review summarizes the published articles related to molecular marker polymorphism of indigenous and imported malaria cases in China in the past two decades, to study the mutation frequency and distribution of crt, mdr1, dhps, dhfr and K13 gene resistance-related loci. This can provide a whole picture of molecular markers and the resistance mutations of imported cases in China, which has certain significance for drug resistance surveillance planning, safe and effective treatment, and preventing the recurrence of local transmission by imported malaria in China in the future.
Collapse
Affiliation(s)
- Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
- World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Fang Huang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
- World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
- World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
- World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| |
Collapse
|
2
|
Kong X, Feng J, Xu Y, Yan G, Zhou S. Molecular surveillance of artemisinin resistance-related Pfk13 and pfcrt polymorphisms in imported Plasmodium falciparum isolates reported in eastern China from 2015 to 2019. Malar J 2022; 21:369. [PMID: 36464686 PMCID: PMC9719650 DOI: 10.1186/s12936-022-04398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment by the World Health Organization to treat uncomplicated Plasmodium falciparum malaria. However, the emergence and spread of P. falciparum resistant to artemisinins and their partner drugs is a significant risk for the global effort to reduce disease burden facing the world. Currently, dihydroartemisinin-piperaquine (DHA-PPQ) is the most common drug used to treat P. falciparum, but little evidence about the resistance status targeting DHA (ACT drug) and its partner drug (PPQ) has been reported in Shandong Province, China. METHODS A retrospective study was conducted to explore the prevalence and spatial distribution of Pfk13 and Pfcrt polymorphisms (sites of 72-76, and 93-356) among imported P. falciparum isolates between years 2015-2019 in Shandong Province in eastern China. Individual epidemiological information was collected from a web-based reporting system were reviewed and analysed. RESULTS A total of 425 P. falciparum blood samples in 2015-2019 were included and 7.3% (31/425) carried Pfk13 mutations. Out of the isolates that carried Pfk13 mutations, 54.8% (17/31) were nonsynonymous polymorphisms. The mutant alleles A578S, Q613H, C469C, and S549S in Pfk13 were the more frequently detected allele, the mutation rate was the same as 9.7% (3/31). Another allele Pfk13 C580Y, closely associated with artemisinin (ART) resistance, was found as 3.2% (2/31), which was found in Cambodia. A total of 14 mutant isolates were identified in Western Africa countries (45.2%, 14/31). For the Pfcrt gene, the mutation rate was 18.1% (77/425). T76T356 and T76 were more frequent in all 13 different haplotypes with 26.0% (20/77) and 23.4% (18/77). The CVIET and CVIKT mutant at loci 72-76 have exhibited a prevalence of 19.5% (15/77) and 3.9% (3/77), respectively. The CVIET was mainly observed in samples from Congo (26.7%, 4/15) and Mozambique (26.7%, 4/15). No mutations were found at loci 97, 101 and 145. For polymorphisms at locus 356, a total of 24 isolates were identified and mainly from Congo (29.2%, 7/24). CONCLUSION These findings indicate a low prevalence of Pfk13 in the African isolates. However, the emergence and increase in the new alleles Pfcrt I356T, reveals a potential risk of drug pressure in PPQ among migrant workers returned from Africa. Therefore, continuous molecular surveillance of Pfcrt mutations and in vitro susceptibility tests related to PPQ are necessary.
Collapse
Affiliation(s)
- Xiangli Kong
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China ,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Jun Feng
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yan Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Ge Yan
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Shuisen Zhou
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Kagoro FM, Allen E, Mabuza A, Workman L, Magagula R, Kok G, Davies C, Malatje G, Guérin PJ, Dhorda M, Maude RJ, Raman J, Barnes KI. Making data map-worthy-enhancing routine malaria data to support surveillance and mapping of Plasmodium falciparum anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study. Malar J 2022; 21:207. [PMID: 35768869 PMCID: PMC9244181 DOI: 10.1186/s12936-022-04224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04224-4.
Collapse
Affiliation(s)
- Frank M Kagoro
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth Allen
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aaron Mabuza
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa
| | - Lesley Workman
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ray Magagula
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Gerdalize Kok
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Craig Davies
- Malaria Programme, Clinton Health Access Initiative, Pretoria, South Africa
| | - Gillian Malatje
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA.,The Open University, Milton Keynes, UK
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Johannesburg, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,UP Institute for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Karen I Barnes
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa. .,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa. .,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Tu H, Feng J, Yu C, Lin K, Peiyu W, Shaomi X, Lingyun L, Jian L. Asymptomatic malaria infection at the China-Vietnam border: Knowledge and implications for the cross-border migrant population during the COVID-19 pandemic. Travel Med Infect Dis 2022; 47:102307. [PMID: 35276354 PMCID: PMC8902057 DOI: 10.1016/j.tmaid.2022.102307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Background Eliminating malaria along the China-Vietnam border remains one of the greatest challenges in China, especially during the coronavirus disease 2019 (COVID-19) pandemic, which has disrupted the continuity of malaria control and elimination programs. Understanding the factors associated with asymptomatic malaria infection will inform control interventions aimed at elimination of the disease among migrants from Vietnam working in China, who constitute an at-risk population. Methods From March 2018 to September 2019, 108 migrants from Vietnam working in Ningming County, Guangxi, were enrolled in this study. Each person was interviewed using a structured questionnaire. Blood samples were collected and sent for PCR detection and sequencing. The obtained sequences were analyzed using the BLAST program and DNAMAN software. Results The proportion of participants with malaria knowledge was low, with 19.4% (21/108) reporting knowledge about transmission, 23.2% (25/108) reporting knowledge about clinical symptoms, 7.4% (8/108) reporting awareness of the risk of death and 14.8% (16/108) reporting awareness of prevention methods. No significant difference in the malaria knowledge rate was found among occupational groups, except in the migrant worker group, whose knowledge rate was higher than those in the other occupational groups (χ2 = 32.452, p < 0.001). Although most of the participants (80.6%, 87/108) owned mosquito nets, only approximately half of the participants (49.1%, 53/108) reported using bed nets. The parasitological analysis revealed that 5.6% (6/108) of all the participants were positive for malaria, including 5 participants with Plasmodium falciparum and 1 participant with Plasmodium vivax malaria. There were no statistically significant differences in the positivity rates among the different age, sex, family-size, nationality, occupational, and behavior groups. The positivity rates in individuals who did not use mosquito nets, did not use mosquito coils, and did not install mosquito nets were 4.8% (1/21), 6.8% (3/44), and 3.6% (2/55), respectively. Conclusion Health education focused on high-risk populations, such as migrant workers and forest goers, should be strengthened. Verbal communication and information transmission via the internet, radio, and mobile phone platforms may be required during the COVID-19 pandemic. Further risk assessments and proactive case detection should also be performed in Ningming County and other border counties in Guangxi to detect active and asymptomatic infections in a timely manner and prevent re-establishment of the disease in these communities.
Collapse
Affiliation(s)
- Hong Tu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, PR China
| | - Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, PR China.
| | - Chenghang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, PR China
| | - Kangming Lin
- Institute of Parasitic Diseases, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Guangxi, PR China
| | - Wang Peiyu
- Ningming County Center for Diseases Control and Prevention, Ningming, Guangxi, PR China
| | - Xiang Shaomi
- Ningming County Center for Diseases Control and Prevention, Ningming, Guangxi, PR China
| | - Luo Lingyun
- Ningming County Center for Diseases Control and Prevention, Ningming, Guangxi, PR China
| | - Li Jian
- Ningming County Center for Diseases Control and Prevention, Ningming, Guangxi, PR China
| |
Collapse
|
5
|
Yan H, Feng J, Yin JH, Huang F, Kong XL, Lin KM, Zhang T, Feng XY, Zhou SS, Cao JP, Xia ZG. High Frequency Mutations in pfdhfr and pfdhps of Plasmodium falciparum in Response to Sulfadoxine-Pyrimethamine: A Cross-Sectional Survey in Returning Chinese Migrants From Africa. Front Cell Infect Microbiol 2021; 11:673194. [PMID: 34568082 PMCID: PMC8456993 DOI: 10.3389/fcimb.2021.673194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment in Africa against Plasmodium falciparum infection. However, increasing SP resistance (SPR) of P. falciparum affects the therapeutic efficacy of SP, and pfdhfr (encoding dihydrofolate reductase) and pfdhps (encoding dihydropteroate synthase) genes are widely used as molecular markers for SPR surveillance. In the present study, we analyzed single nucleotide polymorphisms (SNPs) of pfdhfr and pfdhps in P. falciparum isolated from infected Chinese migrant workers returning from Africa. Methods In total, 159 blood samples from P. falciparum-infected workers who had returned from Africa to Anhui, Shangdong, and Guangxi provinces were successfully detected and analyzed from 2017 to 2019. The SNPs in pfdhfr and pfdhps were analyzed using nested PCR. The genotypes and linkage disequilibrium (LD) were analyzed using Haploview. Results High frequencies of the Asn51Ile (N51I), Cys59Arg(C59R), and Ser108Asn(S108N) mutant alleles were observed, with mutation frequencies of 97.60, 87.43, and 97.01% in pfdhfr, respectively. A triple mutation (IRN) in pfdhfr was the most prevalent haplotype (86.83%). Six point mutations were detected in pfdhps DNA fragment, Ile431Val (I431V), Ser436Ala (S436A), Ala437Gly (A437G), Lys540Glu(K540E), Ala581Gly(A581G), Ala613Ser(A613S). The pfdhps K540E (27.67%) was the most predominant allele, followed by S436A (27.04%), and a single mutant haplotype (SGKAA; 62.66%) was predominant in pfdhps. In total, 5 haplotypes of the pfdhfr gene and 13 haplotypes of the pfdhps gene were identified. A total of 130 isolates with 12 unique haplotypes were found in the pfdhfr-pfdhps combined haplotypes, most of them (n = 85, 65.38%) carried quadruple allele combinations (CIRNI-SGKAA). Conclusion A high prevalence of point mutations in the pfdhfr and pfdhps genes of P. falciparum isolates was detected among Chinese migrant workers returning from Africa. Therefore, continuous in vitro molecular monitoring of Sulfadoxine-Pyrimethemine combined in vivo therapeutic monitoring of artemisinin combination therapy (ACT) efficacy and additional control efforts among migrant workers are urgently needed.
Collapse
Affiliation(s)
- He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Xiang-Li Kong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Kang-Ming Lin
- Instit of Parasitic Diseases, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Guangxi, China
| | - Tao Zhang
- Anhu Provincial Center for Disease Control and Prevention, Anhui, China
| | - Xin-Yu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shui-Sen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| |
Collapse
|
6
|
Characterization of pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu in Travelers Returning from Africa with Plasmodium falciparum Infections Reported in China from 2014 to 2018. Antimicrob Agents Chemother 2021; 65:e0271720. [PMID: 33903109 DOI: 10.1128/aac.02717-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The artemisinin-based combination therapies (ACTs) used to treat Plasmodium falciparum in Africa are threatened by the emergence of parasites in Asia that carry variants of the Kelch 13 (K13) locus with delayed clearance in response to ACTs. Single nucleotide polymorphisms (SNPs) in other molecular markers, such as ap2mu and ubp1, were associated with artemisinin resistance in rodent malaria and clinical failure in African malaria patients. Here, we characterized the polymorphisms in pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu among African isolates reported in Shandong and Guangxi provinces in China. Among 144 patients with P. falciparum returning from Africa from 2014 to 2018, pfmdr1 N86Y (8.3%) and pfcrt K76T (2.1%) were the major mutant alleles. The most common genotype for pfcrt was I74E75T76 (8.3%), followed by E75T76 (2.1%). For K13 polymorphisms, a limited number of mutated alleles were observed, and A578S was the most frequently detected allele in 3 isolates (2.1%). A total of 27.1% (20/144) of the isolates were found to contain pfubp1 mutations, including 6 nonsynonymous and 2 synonymous mutations. The pfubp1 genotypes associated with artemisinin resistance were D1525E (10.4%) and E1528D (8.3%). Furthermore, 11 SNPs were identified in pfap2mu, and S160N was the major polymorphism (4.2%). Additionally, 4 different types of insertions were found in pfap2mu, and the codon AAT, encoding aspartic acid, was more frequently observed at codons 226 (18.8%) and 326 (10.7%). Moreover, 4 different types of insertions were observed in pfubp1 at codon 1520, which was the most common (6.3%). These findings indicate a certain degree of variation in other potential molecular markers, such as pfubp1 and pfap2mu, and their roles in either the parasite's mechanism of resistance or the mode of action should be evaluated or elucidated further.
Collapse
|
7
|
Gupta Y, Goicoechea S, Pearce CM, Mathur R, Romero JG, Kwofie SK, Weyenberg MC, Daravath B, Sharma N, Poonam, Akala HM, Kanzok SM, Durvasula R, Rathi B, Kempaiah P. The emerging paradigm of calcium homeostasis as a new therapeutic target for protozoan parasites. Med Res Rev 2021; 42:56-82. [PMID: 33851452 DOI: 10.1002/med.21804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/10/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Steven Goicoechea
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine M Pearce
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Raman Mathur
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Jesus G Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Matthew C Weyenberg
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Bharathi Daravath
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Neha Sharma
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Poonam
- Department of Chemistry, Miranda House University Enclave, University of Delhi, Delhi, India
| | | | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Niba PTN, Nji AM, Evehe MS, Ali IM, Netongo PM, Ngwafor R, Moyeh MN, Ngum LN, Ndum OE, Acho FA, Mbu'u CM, Fosah DA, Atogho-Tiedeu B, Achonduh-Atijegbe O, Djokam-Dadjeu R, Chedjou JPK, Bigoga JD, Moukoko CEE, Ajua A, Achidi E, Tallah E, Leke RGF, Tourgordi A, Ringwald P, Alifrangis M, Mbacham WF. Drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon: a systematic review and meta-analysis (1998-2020). Malar J 2021; 20:32. [PMID: 33422080 PMCID: PMC7796563 DOI: 10.1186/s12936-020-03543-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. METHODS The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran's Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. RESULTS Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1-42.3%). Between 1998 and 2020, there was significant decline (P < 0.0001 for all) in key mutants including Pfcrt 76 T (79.9%-43.0%), Pfmdr1 86Y (82.7%-30.5%), Pfdhfr 51I (72.2%-66.9%), Pfdhfr 59R (76.5%-67.8%), Pfdhfr 108 N (80.8%-67.6%). The only exception was Pfdhps 437G which increased over time (30.4%-46.9%, P < 0.0001) and Pfdhps 540E that remained largely unchanged (0.0%-0.4%, P = 0.201). Exploring mutant haplotypes, the study observed a significant increase in the prevalence of Pfcrt CVIET mixed quintuple haplotype from 57.1% in 1998 to 57.9% in 2020 (P < 0.0001). In addition, within the same study period, there was no significant change in the triple Pfdhfr IRN mutant haplotype (66.2% to 67.3%, P = 0.427). The Pfk13 amino acid polymorphisms associated with artemisinin resistance were not detected. CONCLUSIONS This review reported an overall decline in the prevalence of P. falciparum gene mutations conferring resistance to 4-aminoquinolines and amino alcohols for a period over two decades. Resistance to artemisinins measured by the presence of SNPs in the Pfk13 gene does not seem to be a problem in Cameroon. Systematic review registration PROSPERO CRD42020162620.
Collapse
Affiliation(s)
- Peter Thelma Ngwa Niba
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Akindeh M Nji
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie-Solange Evehe
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Innocent M Ali
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Palmer Masumbe Netongo
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Randolph Ngwafor
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Marcel N Moyeh
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lesley Ngum Ngum
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Oliva Ebie Ndum
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Université Des Montagnes, Banganté, West Region, Cameroon
| | - Fon Abongwa Acho
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
| | - Cyrille Mbanwi Mbu'u
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Microbiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Dorothy A Fosah
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Barbara Atogho-Tiedeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Rosine Djokam-Dadjeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Kengne Chedjou
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jude D Bigoga
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Carole Else Eboumbou Moukoko
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Service, Centre Pasteur Cameroon, Yaoundé, Cameroon
| | - Anthony Ajua
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Eric Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Esther Tallah
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Rose G F Leke
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Alexis Tourgordi
- The Cameroon Office of the World Health Organization, Yaoundé, Cameroon
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wilfred F Mbacham
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon.
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon.
| |
Collapse
|
9
|
Aninagyei E, Tetteh CD, Oppong M, Boye A, Acheampong DO. Efficacy of Artemether-Lumefantrine on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes isolated in Ghana. Parasite Epidemiol Control 2020; 11:e00190. [PMID: 33163636 PMCID: PMC7607505 DOI: 10.1016/j.parepi.2020.e00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Artemether-Lumefantrine (A-L) remains the drug of choice for the treatment of uncomplicated malaria in Ghana. However, the pharmaco-activity of A-L has not been assessed on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes. Therefore, this study sought to determine the therapeutic efficacy of A-L on P. falciparum parasites isolated from Ghana. Methods The clinical study was done in Ga West Municipality, Ghana, where 78 uncomplicated malaria patients were recruited with prior consent. The patients were treated orally with A-L according to national treatment guidelines. Baseline parasitaemia was determined before treatment and 8-hourly parasitaemia posttreatment were determined till initial clearance of parasitaemia and at days 7, 14, 21, and 28. Kelch 13 and Pfmdr1 genes were genotyped by sequencing using baseline samples. Parasite clearance characteristics were determined using Parasite Clearance Estimator beta 0.9 application. Results Five Kelch 13 (F446I, S466N, R539I, A578S, and A676S) and three Pfmdr1 mutations (N86Y, Y184F and D1246Y) were identified in 78 infected samples. About 8% of the samples contained two Pfmdr1 double mutations (N86Y & D1246Y and Y184F & N86Y). Additionally, three samples (3.8%) were found to contain both Kelch 13 mutations and Pfmdr1 wild type genes. In all patients, parasitaemia persisted within the first 24 h of A-L therapy. However, at hour 40, only two patients were parasitaemic while all patients were aparasitaemic at hour 48. The genotypic profiles of the two persistent parasites at hour 40 were F446I and D1246Y, and R539I, Y184F, and N86Y. The slope half-life of the former was 6.4 h while the latter was 6.9 h and their respective PCT99 were 47.9 h and 49.2 h as well as a clearance rate constants of 0.109 and 0.092 respectively. Conclusion This study reports the effectiveness of A-L on various P. falciparum mutant alleles. However, continuous surveillance of Kelch 13 mutations and Pfmdr1 gene in Ghana and regular assessment of the therapeutic efficacy of A-L and other artemisinin derivatives is recommended.
Collapse
Key Words
- A, alanine
- A-L, Artemether-Lumefantrine
- ACT, Artemisinin-based Combination Therapy
- AS-AQ, Artesunate-Amodiaquine
- Amino acids:, A-alanine
- Artemether-Lumefantrine
- C, cysteine
- CRC, clearance rate constant
- D, aspartic acid
- DHAP, Dihydroartemisinin-Piperaquine
- F, phenylalanine
- G, glycine
- G-6-PD, Glucose-6-phosphate dehydrogenase
- GHS, Ghana Health Service
- Ga West Municipal
- Ghana
- I, isoleucine
- Kelch 13 gene mutations
- N, asparagine
- PCTs, parasite clearance times
- Parasite clearance characteristics
- Pfmdr1 genes
- Pfmdr1, Plasmodium multidrug resistance gene
- SNPs, Single nucleotide polymorphisms
- V, valine
- WHO, World Health Organization
- Y, tyrosine
- dsDNA, double stranded DNA
- sWGA, selective whole genome amplification
Collapse
Affiliation(s)
- Enoch Aninagyei
- University of Health and Allied Sciences, School of Basic and Biomedical Sciences, Department of Biomedical Sciences, PMB 31, Ho-Volta Region, Ghana
- Corresponding authors.
| | - Comfort Dede Tetteh
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Martin Oppong
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Alex Boye
- University of Cape Coast, School of Allied Health Sciences, Department of Medical Laboratory Science, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- University of Cape Coast, School of Allied Health Sciences, Department of Biomedical Sciences, Cape Coast, Ghana
- Corresponding authors.
| |
Collapse
|
10
|
Prevalence of Plasmodium falciparum Kelch 13 ( PfK13) and Ubiquitin-Specific Protease 1 ( pfubp1) Gene Polymorphisms in Returning Travelers from Africa Reported in Eastern China. Antimicrob Agents Chemother 2020; 64:AAC.00981-20. [PMID: 32839222 DOI: 10.1128/aac.00981-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Delayed clearance of Plasmodium falciparum by artemisinin-based combination therapies (ACTs) has already been observed for African isolates. Here, we aimed to investigate the prevalence, among travelers returning from African countries, of polymorphisms in two genes correlated with delayed parasite clearance (encoding P. falciparum Kelch 13 [PfK13] and ubiquitin-specific protease 1 [pfubp1]) reported in eastern China and to provide baseline data for antimalarial drug resistance (ART) surveillance and evaluation. A total of 153 filter paper blood spots collected in 2017-2019 from patients with uncomplicated P. falciparum cases in Anhui and Shandong Provinces were included in this study. Among them, 3.3% (5/153) of the isolates carried PfK13 mutations, and 3 of them harbored the same synonymous mutation, C469C. A total of 13.1% (20/153) of the isolates were found to contain pfubp1 mutations, and all were nonsynonymous. The pfubp1 genotypes associated with ART that occurred in this study included E1528D (6.5% [10/153]) and D1525E (2.6% [4/153]). However, a high prevalence of the previously unreported mutation E1531D (5.9% [9/153]) was also detected. In addition, two types of deletions (encoding KID and KIE, respectively) and two types of insertions (encoding KYE and KYDKYD, respectively) were found in 16 isolates and 6 isolates, respectively. This study showed limited variation in PfK13 among travelers returning from African countries and suggested other potential molecular markers, such as pfubp1, for use in the surveillance of African isolates in ACT susceptibility studies. Further clinical trial research is under way to investigate these PfK13 and pfubp1 mutations, as well as other candidate molecular markers, and their roles in delaying parasite clearance.
Collapse
|