1
|
Marinho Y, Villarreal ES, Loya O, Oliveira SD. Mechanisms of lung endothelial cell injury and survival in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L972-L983. [PMID: 39406383 PMCID: PMC11684956 DOI: 10.1152/ajplung.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 12/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1), both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Elizabeth S Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Omar Loya
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Suellen D Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Calvo-Lozano O, Aviñó A, Friaza V, Medina-Escuela A, S. Huertas C, Calderón EJ, Eritja R, Lechuga LM. Fast and Accurate Pneumocystis Pneumonia Diagnosis in Human Samples Using a Label-Free Plasmonic Biosensor. NANOMATERIALS 2020; 10:nano10061246. [PMID: 32604931 PMCID: PMC7353103 DOI: 10.3390/nano10061246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/30/2023]
Abstract
Pneumocystis jirovecii is a fungus responsible for human Pneumocystis pneumonia, one of the most severe infections encountered in immunodepressed individuals. The diagnosis of Pneumocystis pneumonia continues to be challenging due to the absence of specific symptoms in infected patients. Moreover, the standard diagnostic method employed for its diagnosis involves mainly PCR-based techniques, which besides being highly specific and sensitive, require specialized personnel and equipment and are time-consuming. Our aim is to demonstrate an optical biosensor methodology based on surface plasmon resonance to perform such diagnostics in an efficient and decentralized scheme. The biosensor methodology employs poly-purine reverse-Hoogsteen hairpin probes for the detection of the mitochondrial large subunit ribosomal RNA (mtLSU rRNA) gene, related to P. jirovecii detection. The biosensor device performs a real-time and label-free identification of the mtLSU rRNA gene with excellent selectivity and reproducibility, achieving limits of detection of around 2.11 nM. A preliminary evaluation of clinical samples showed rapid, label-free and specific identification of P. jirovecii in human lung fluids such as bronchoalveolar lavages or nasopharyngeal aspirates. These results offer a door for the future deployment of a sensitive diagnostic tool for fast, direct and selective detection of Pneumocystis pneumonia disease.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine c/Jordi Girona 18–26, 08034 Barcelona, Spain;
- Correspondence:
| | - Vicente Friaza
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville and CIBER in Epidemiology and Public Health, 41013 Seville, Spain; (V.F.); (E.J.C.)
| | - Alfonso Medina-Escuela
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain;
| | - César S. Huertas
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Enrique J. Calderón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville and CIBER in Epidemiology and Public Health, 41013 Seville, Spain; (V.F.); (E.J.C.)
- Department of Medicine, University of Seville, 41013 Seville, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine c/Jordi Girona 18–26, 08034 Barcelona, Spain;
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
| |
Collapse
|