1
|
Kumar R, Kumar A, Kumar S. Sepsis in liver failure patients: Diagnostic challenges and recent advancements. World J Crit Care Med 2025; 14:101587. [DOI: 10.5492/wjccm.v14.i2.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Acute liver failure (ALF) and acute-on-chronic LF (ACLF) are prevalent hepatic emergencies characterized by an increased susceptibility to bacterial infections (BI), despite significant systemic inflammation. Literature indicates that 30%–80% of ALF patients and 55%–81% of ACLF patients develop BI, attributed to immunological dysregulation. Bacterial sepsis in these patients is associated with adverse clinical outcomes, including prolonged hospitalization and increased mortality. Early detection of bacterial sepsis is critical; however, distinguishing between sterile systemic inflammation and sepsis poses a significant challenge due to the overlapping clinical presentations of LF and sepsis. Conventional sepsis biomarkers, such as procalcitonin and C-reactive protein, have shown limited utility in LF patients due to inconsistent results. In contrast, novel biomarkers like presepsin and sTREM-1 have demonstrated promising discriminatory performance in this population, pending further validation. Moreover, emerging research highlights the potential of machine learning-based approaches to enhance sepsis detection and characterization. Although preliminary findings are encouraging, further studies are necessary to validate these results across diverse patient cohorts, including those with LF. This article provides a comprehensive review of the magnitude, impact, and diagnostic challenges associated with BI in LF patients, focusing on novel advancements in early sepsis detection and characterization.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Abhishek Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Sudhir Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| |
Collapse
|
2
|
Fan J, Jiang Y, Wang X, Lyv J. Development of machine learning prognostic models for overall survival of epithelial ovarian cancer patients: a SEER-based study. Expert Rev Anticancer Ther 2025:1-10. [PMID: 39924466 DOI: 10.1080/14737140.2025.2465903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
RESEARCH DESIGN AND METHODS Data were obtained from the SEER database for women diagnosed with EOC between 2004 and 2020. Clinical features, treatment regimens and overall survival (OS) were analyzed. Cox regression was conducted to identify prognostic factors associated with EOC. We employed 5-fold cross-validation to improve the accuracy of the model. Random Survival Forest (RSF), Gradient Boosting Survival Analysis (GBSA) and Support Vector Machine (SVM) were used to develop ML models, then compared with the Cox model. The predictive performance of these models was assessed using AUC, concordance index (C-index), and Brier scores. RESULTS A total of 12,949 EOC patients were selected from the SEER database. We identified 14 independent prognostic factors for OS and constructed predictive models. The GBSA model demonstrated superior AUC, C-index, and Brier scores across different time points, outperforming the Cox model. SHAP analysis showed that FIGO stage, grade, and lymph node dissection were the most important features in the GBSA model. CONCLUSIONS The GBSA model outperforms traditional methods in survival prediction, offering a valuable tool for clinicians to make informed decisions about patient prognosis.
Collapse
Affiliation(s)
- Jianing Fan
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
| | - Yu Jiang
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
| | - Xinyan Wang
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
| | - Juan Lyv
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Zhang W, Shi H, Peng J. A diagnostic model for sepsis using an integrated machine learning framework approach and its therapeutic drug discovery. BMC Infect Dis 2025; 25:219. [PMID: 39953444 PMCID: PMC11827343 DOI: 10.1186/s12879-025-10616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Sepsis remains a life-threatening condition in intensive care units (ICU) with high morbidity and mortality rates. Some biomarkers commonly used in clinic do not have the characteristics of rapid and specific growth and rapid decline after effective treatment. Machine learning has shown great potential in early diagnosis, subtype analysis, accurate treatment and prognosis evaluation of sepsis. METHODS Gene expression matrices from GSE13904 and GSE26440 were combined into a training model after quality control and standardization. Then, the intersection genes were obtained by crossing the screened differentially expressed genes (DEGs) and the module genes with the strongest correlation obtained by WGCNA analysis. 113 combined machine learning algorithms to build a diagnosis model. Then the CIBERSORT algorithm is used to analyze the relationship between the change of core gene expression and immune response in sepsis. Construct nomogram, DCA and CIC to further verify the reliability of the diagnosis model. The potential molecular compounds interacting with key genes were searched from the Traditional Chinese Medicine Active Compound Library (TCMACL). RESULTS We screened 405 DEGs, including 334 up-regulated and 71 down-regulated genes. The 308 potential genes were obtained by intersection of MEturquoise module genes in WGCNA analysis and DEGs for subsequent machine learning analysis. GO and KEGG enrichment analysis showed that sepsis was mainly related to immune response and bacterial infection. Then 113 combined machine learning algorithms are applied to construct a diagnosis model to screen 22 hub genes. Four four key genes (CD177, GNLY, ANKRD22, and IFIT1) are obtained through further analysis of PPI network constructed by 22 hub genes. Subsequently, the diagnostic model is proved to have good predictive value by nomogram, DCA and CIC. Finally, molecular compounds (Dieckol, Grosvenorine and Tellimagrandin II) were screened out as potential drugs. CONCLUSION 113 combinated machine learning algorithms screened out four key genes that can distinguish sepsis patients. At the same time, potential therapeutic molecular compounds interacting with key genes genes were screened out by molecular docking.
Collapse
Affiliation(s)
- Wuping Zhang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, Jiangxi Province, 330006, China
| | - Hanping Shi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jie Peng
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
4
|
Shi S, Zhang L, Zhang S, Shi J, Hong D, Wu S, Pan X, Lin W. Developing a rapid screening tool for high-risk ICU patients of sepsis: integrating electronic medical records with machine learning methods for mortality prediction in hospitalized patients-model establishment, internal and external validation, and visualization. J Transl Med 2025; 23:97. [PMID: 39838426 PMCID: PMC11753157 DOI: 10.1186/s12967-025-06102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES To develop a machine learning-based prediction model using clinical data from the first 24 h of ICU admission to enable rapid screening and early intervention for sepsis patients. METHODS This multicenter retrospective cohort study analyzed electronic medical records of sepsis patients using machine learning methods. We evaluated model performance in predicting sepsis outcomes within the first 24 h of ICU admission across US and Chinese healthcare settings. RESULTS From 31 clinical features, machine learning models demonstrated significantly better predictive performance than traditional approaches for sepsis outcomes. While linear regression achieved low test scores (0.25), machine learning methods reached scores of 0.78 and AUCs above 0.8 in testing. Importantly, these models maintained robust performance (scores 0.63-0.77) in external validation. CONCLUSIONS The application of machine learning-based prediction models for sepsis could significantly improve patient outcomes through early detection and timely intervention in the critical first 24 h of ICU admission, supporting clinical decision-making.
Collapse
Affiliation(s)
- Songchang Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Lihui Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Shujuan Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Jinyang Shi
- Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Donghuang Hong
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Siqi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Xiaobin Pan
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No 134 Dongjie Street, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
5
|
Li F, Wang S, Gao Z, Qing M, Pan S, Liu Y, Hu C. Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring. Front Med (Lausanne) 2025; 11:1510792. [PMID: 39835096 PMCID: PMC11743359 DOI: 10.3389/fmed.2024.1510792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Sepsis remains a leading cause of morbidity and mortality worldwide due to its rapid progression and heterogeneous nature. This review explores the potential of Artificial Intelligence (AI) to transform sepsis management, from early detection to personalized treatment and real-time monitoring. AI, particularly through machine learning (ML) techniques such as random forest models and deep learning algorithms, has shown promise in analyzing electronic health record (EHR) data to identify patterns that enable early sepsis detection. For instance, random forest models have demonstrated high accuracy in predicting sepsis onset in intensive care unit (ICU) patients, while deep learning approaches have been applied to recognize complications such as sepsis-associated acute respiratory distress syndrome (ARDS). Personalized treatment plans developed through AI algorithms predict patient-specific responses to therapies, optimizing therapeutic efficacy and minimizing adverse effects. AI-driven continuous monitoring systems, including wearable devices, provide real-time predictions of sepsis-related complications, enabling timely interventions. Beyond these advancements, AI enhances diagnostic accuracy, predicts long-term outcomes, and supports dynamic risk assessment in clinical settings. However, ethical challenges, including data privacy concerns and algorithmic biases, must be addressed to ensure fair and effective implementation. The significance of this review lies in addressing the current limitations in sepsis management and highlighting how AI can overcome these hurdles. By leveraging AI, healthcare providers can significantly enhance diagnostic accuracy, optimize treatment protocols, and improve overall patient outcomes. Future research should focus on refining AI algorithms with diverse datasets, integrating emerging technologies, and fostering interdisciplinary collaboration to address these challenges and realize AI's transformative potential in sepsis care.
Collapse
Affiliation(s)
- Fang Li
- Department of General Surgery, Chongqing General Hospital, Chongqing, China
| | - Shengguo Wang
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Gao
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maofeng Qing
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Pan
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Liu
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengchen Hu
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Bignami EG, Berdini M, Panizzi M, Domenichetti T, Bezzi F, Allai S, Damiano T, Bellini V. Artificial Intelligence in Sepsis Management: An Overview for Clinicians. J Clin Med 2025; 14:286. [PMID: 39797368 PMCID: PMC11722371 DOI: 10.3390/jcm14010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Sepsis is one of the leading causes of mortality in hospital settings, and early diagnosis is a crucial challenge to improve clinical outcomes. Artificial intelligence (AI) is emerging as a valuable resource to address this challenge, with numerous investigations exploring its application to predict and diagnose sepsis early, as well as personalizing its treatment. Machine learning (ML) models are able to use clinical data collected from hospital Electronic Health Records or continuous monitoring to predict patients at risk of sepsis hours before the onset of symptoms. Background/Objectives: Over the past few decades, ML and other AI tools have been explored extensively in sepsis, with models developed for the early detection, diagnosis, prognosis, and even real-time management of treatment strategies. Methods: This review was conducted according to the SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research Type) framework to define the study methodology. A critical overview of each paper was conducted by three different reviewers, selecting those that provided original and comprehensive data relevant to the specific topic of the review and contributed significantly to the conceptual or practical framework discussed, without dwelling on technical aspects of the models used. Results: A total of 194 articles were found; 28 were selected. Articles were categorized and analyzed based on their focus-early prediction, diagnosis, mortality or improvement in the treatment of sepsis. The scientific literature presents mixed outcomes; while some studies demonstrate improvements in mortality rates and clinical management, others highlight challenges, such as a high incidence of false positives and the lack of external validation. This review is designed for clinicians and healthcare professionals, and aims to provide an overview of the application of AI in sepsis management, reviewing the main studies and methodologies used to assess its effectiveness, limitations, and future potential.
Collapse
Affiliation(s)
- Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy; (M.B.); (M.P.); (T.D.); (F.B.); (S.A.); (T.D.); (V.B.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dalal S, Ardabili AK, Bonavia AS. Time-Series Deep Learning and Conformal Prediction for Improved Sepsis Diagnosis in Non-ICU Hospitalized Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317716. [PMID: 39606323 PMCID: PMC11601686 DOI: 10.1101/2024.11.21.24317716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose Sepsis, a life-threatening condition from an uncontrolled immune response to infection, is a leading cause of in-hospital mortality. Early detection is crucial, yet traditional diagnostic methods, like SIRS and SOFA, often fail to identify sepsis in non-ICU settings where monitoring is less frequent. Recent machine learning (ML) models offer new possibilities but lack generalizability and suffer from high false alarm rates. Methods We developed a deep learning (DL) model tailored for non-ICU environments, using MIMIC-IV data with a conformal prediction framework to handle uncertainty. The model was trained on 83,813 patients and validated with the eICU-CRD dataset to test performance across hospital settings. Results Our model predicted sepsis at 24, 12, and 6 h before onset, achieving AUROCs of 0.96, 0.98, and 0.99, respectively. The conformal approach reduced false positives and improved specificity. External validation confirmed similar performance, with a 57% reduction in false alarms at the 6 h window, supporting practical use in low-monitoring environments. Conclusions This DL-based model enables accurate, early sepsis prediction with minimal data, addressing key clinical challenges and potentially improving resource allocation in hospital settings by reducing unnecessary ICU admissions and enhancing timely interventions.
Collapse
Affiliation(s)
- Shaunak Dalal
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
| | - Ahad Khaleghi Ardabili
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
| | - Anthony S. Bonavia
- Department of Anesthesiology and Perioperative Medicine, 500 University Dr, Hershey, 17033, PA, USA
- Critical Illness and Sepsis Research Center, 700 HMC Cres Rd, Hershey, 17033, PA, USA
| |
Collapse
|
8
|
Yadgarov MY, Landoni G, Berikashvili LB, Polyakov PA, Kadantseva KK, Smirnova AV, Kuznetsov IV, Shemetova MM, Yakovlev AA, Likhvantsev VV. Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis. Front Med (Lausanne) 2024; 11:1491358. [PMID: 39478824 PMCID: PMC11523135 DOI: 10.3389/fmed.2024.1491358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Background With machine learning (ML) carving a niche in diverse medical disciplines, its role in sepsis prediction, a condition where the 'golden hour' is critical, is of paramount interest. This study assesses the factors influencing the efficacy of ML models in sepsis prediction, aiming to optimize their use in clinical practice. Methods We searched Medline, PubMed, Google Scholar, and CENTRAL for studies published from inception to October 2023. We focused on studies predicting sepsis in real-time settings in adult patients in any hospital settings without language limits. The primary outcome was area under the curve (AUC) of the receiver operating characteristic. This meta-analysis was conducted according to PRISMA-NMA guidelines and Cochrane Handbook recommendations. A Network Meta-Analysis using the CINeMA approach compared ML models against traditional scoring systems, with meta-regression identifying factors affecting model quality. Results From 3,953 studies, 73 articles encompassing 457,932 septic patients and 256 models were analyzed. The pooled AUC for ML models was 0.825 and it significantly outperformed traditional scoring systems. Neural Network and Decision Tree models demonstrated the highest AUC metrics. Significant factors influencing AUC included ML model type, dataset type, and prediction window. Conclusion This study establishes the superiority of ML models, especially Neural Network and Decision Tree types, in sepsis prediction. It highlights the importance of model type and dataset characteristics for prediction accuracy, emphasizing the necessity for standardized reporting and validation in ML healthcare applications. These findings call for broader clinical implementation to evaluate the effectiveness of these models in diverse patient groups. Systematic review registration https://inplasy.com/inplasy-2023-12-0062/, identifier, INPLASY2023120062.
Collapse
Affiliation(s)
- Mikhail Ya Yadgarov
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Giovanni Landoni
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Anesthesiology, Vita-Salute San Raffaele University, Milan, Italy
| | - Levan B. Berikashvili
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Petr A. Polyakov
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Kristina K. Kadantseva
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Anastasia V. Smirnova
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Ivan V. Kuznetsov
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Maria M. Shemetova
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexey A. Yakovlev
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Valery V. Likhvantsev
- Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia
- Department of Anesthesiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Sreedharan JK, Saleh F, Alqahtani A, Albalawi IA, Gopalakrishnan GK, Alahmed HA, Alsultan BA, Alalharith DM, Alnasser M, Alahmari AD, Karthika M. Applications of artificial intelligence in emergency and critical care diagnostics: a systematic review and meta-analysis. Front Artif Intell 2024; 7:1422551. [PMID: 39430618 PMCID: PMC11487586 DOI: 10.3389/frai.2024.1422551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Artificial intelligence has come to be the highlight in almost all fields of science. It uses various models and algorithms to detect patterns and specific findings to diagnose a disease with utmost accuracy. With the increasing need for accurate and precise diagnosis of disease, employing artificial intelligence models and concepts in healthcare setup can be beneficial. Methodology The search engines and databases employed in this study are PubMed, ScienceDirect and Medline. Studies published between 1st January 2013 to 1st February 2023 were included in this analysis. The selected articles were screened preliminarily using the Rayyan web tool, after which investigators screened the selected articles individually. The risk of bias for the selected studies was assessed using QUADAS-2 tool specially designed to test bias among studies related to diagnostic test reviews. Results In this review, 17 studies were included from a total of 12,173 studies. These studies were analysed for their sensitivity, accuracy, positive predictive value, specificity and negative predictive value in diagnosing barrette's neoplasia, cardiac arrest, esophageal adenocarcinoma, sepsis and gastrointestinal stromal tumors. All the studies reported heterogeneity with p-value <0.05 at confidence interval 95%. Conclusion The existing evidential data suggests that artificial intelligence can be highly helpful in the field of diagnosis providing maximum precision and early detection. This helps to prevent disease progression and also helps to provide treatment at the earliest. Employing artificial intelligence in diagnosis will define the advancement of health care environment and also be beneficial in every aspect concerned with treatment to illnesses.
Collapse
Affiliation(s)
- Jithin K. Sreedharan
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Fred Saleh
- Deanship—College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Abdullah Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ibrahim Ahmed Albalawi
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | | | | | | | - Musallam Alnasser
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ayedh Dafer Alahmari
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manjush Karthika
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Hou YT, Wu MY, Chen YL, Liu TH, Cheng RT, Hsu PL, Chao AK, Huang CC, Cheng FW, Lai PL, Wu IF, Yiang GT. EFFICACY OF A SEPSIS CLINICAL DECISION SUPPORT SYSTEM IN IDENTIFYING PATIENTS WITH SEPSIS IN THE EMERGENCY DEPARTMENT. Shock 2024; 62:480-487. [PMID: 38813929 DOI: 10.1097/shk.0000000000002394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: Early prediction of sepsis onset is crucial for reducing mortality and the overall cost burden of sepsis treatment. Currently, few effective and accurate prediction tools are available for sepsis. Hence, in this study, we developed an effective sepsis clinical decision support system (S-CDSS) to assist emergency physicians to predict sepsis. Methods: This study included patients who had visited the emergency department (ED) of Taipei Tzu Chi Hospital, Taiwan, between January 1, 2020, and June 31, 2022. The patients were divided into a derivation cohort (n = 70,758) and a validation cohort (n = 27,545). The derivation cohort was subjected to 6-fold stratified cross-validation, reserving 20% of the data (n = 11,793) for model testing. The primary study outcome was a sepsis prediction ( International Classification of Diseases , Tenth Revision , Clinical Modification ) before discharge from the ED. The S-CDSS incorporated the LightGBM algorithm to ensure timely and accurate prediction of sepsis. The validation cohort was subjected to multivariate logistic regression to identify the associations of S-CDSS-based high- and medium-risk alerts with clinical outcomes in the overall patient cohort. For each clinical outcome in high- and medium-risk patients, we calculated the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy of S-CDSS-based predictions. Results: The S-CDSS was integrated into our hospital information system. The system featured three risk warning labels (red, yellow, and white, indicating high, medium, and low risks, respectively) to alert emergency physicians. The sensitivity and specificity of the S-CDSS in the derivation cohort were 86.9% and 92.5%, respectively. In the validation cohort, high- and medium-risk alerts were significantly associated with all clinical outcomes, exhibiting high prediction specificity for intubation, general ward admission, intensive care unit admission, ED mortality, and in-hospital mortality (93.29%, 97.32%, 94.03%, 93.04%, and 93.97%, respectively). Conclusion: Our findings suggest that the S-CDSS can effectively identify patients with suspected sepsis in the ED. Furthermore, S-CDSS-based predictions appear to be strongly associated with clinical outcomes in patients with sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pei-Lan Hsu
- Department of informatics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - An-Kuo Chao
- ASUS Intelligent Cloud Services, Taipei, Taiwan
| | | | | | - Po-Lin Lai
- ASUS Intelligent Cloud Services, Taipei, Taiwan
| | - I-Feng Wu
- ASUS Intelligent Cloud Services, Taipei, Taiwan
| | | |
Collapse
|
11
|
Vairachilai S, Anuhya D, Tirkey A, Raja SP. SLB - SMOTE logistic blending hybrid machine learning model for chronic polycystic ovary syndrome prediction with correlated feature selection. Inform Health Soc Care 2024; 49:190-211. [PMID: 39462163 DOI: 10.1080/17538157.2024.2405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OBJECTIVE In this study, we aimed to develop a machine learning (ML) model for predicting Polycystic Ovary Syndrome (PCOS) based on demographic, clinical, and biochemical parameters. METHODOLOGY We collected data from Kaggle, which included information on age, body mass index, menstrual cycle length, follicle-stimulating hormone, hair growth, and more. Using this data, we trained several traditional ML and ensemble algorithms to predict PCOS. RESULTS Among the traditional ML algorithms, Logistic Regression emerged as the best, boasting the highest accuracy of 0.91 and an AUC of 0.90. In ensemble algorithms, the Blending algorithm outperformed other ensemble methods, also achieving an accuracy of 0.91 and an AUC of 0.90, with a balanced precision and recall of 0.88. SIGNIFICANCE OF THE RESEARCH These results establish Logistic Regression and the Blending algorithm as optimal choices for accurate and reliable PCOS prediction, demonstrating strong discriminative power and the ability to correctly classify PCOS cases.
Collapse
Affiliation(s)
- S Vairachilai
- School of Engineering and Technology, Sanskriti University, Mathura, Uttar Pradesh 281401
| | - Devarakonda Anuhya
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, India
| | - Anjeleen Tirkey
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, India
| | - S P Raja
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
12
|
Giacobbe DR, Marelli C, Guastavino S, Signori A, Mora S, Rosso N, Campi C, Piana M, Murgia Y, Giacomini M, Bassetti M. Artificial intelligence and prescription of antibiotic therapy: present and future. Expert Rev Anti Infect Ther 2024; 22:819-833. [PMID: 39155449 DOI: 10.1080/14787210.2024.2386669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION In the past few years, the use of artificial intelligence in healthcare has grown exponentially. Prescription of antibiotics is not exempt from its rapid diffusion, and various machine learning (ML) techniques, from logistic regression to deep neural networks and large language models, have been explored in the literature to support decisions regarding antibiotic prescription. AREAS COVERED In this narrative review, we discuss promises and challenges of the application of ML-based clinical decision support systems (ML-CDSSs) for antibiotic prescription. A search was conducted in PubMed up to April 2024. EXPERT OPINION Prescribing antibiotics is a complex process involving various dynamic phases. In each of these phases, the support of ML-CDSSs has shown the potential, and also the actual ability in some studies, to favorably impacting relevant clinical outcomes. Nonetheless, before widely exploiting this massive potential, there are still crucial challenges ahead that are being intensively investigated, pertaining to the transparency of training data, the definition of the sufficient degree of prediction explanations when predictions are obtained through black box models, and the legal and ethical framework for decision responsibility whenever an antibiotic prescription is supported by ML-CDSSs.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Marelli
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Alessio Signori
- Section of Biostatistics, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Sara Mora
- UO Information and Communication Technologies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Rosso
- UO Information and Communication Technologies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Campi
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Piana
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
Khan A, Zubair S, Shuaib M, Sheneamer A, Alam S, Assiri B. Development of a robust parallel and multi-composite machine learning model for improved diagnosis of Alzheimer's disease: correlation with dementia-associated drug usage and AT(N) protein biomarkers. Front Neurosci 2024; 18:1391465. [PMID: 39308946 PMCID: PMC11412962 DOI: 10.3389/fnins.2024.1391465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Machine learning (ML) algorithms and statistical modeling offer a potential solution to offset the challenge of diagnosing early Alzheimer's disease (AD) by leveraging multiple data sources and combining information on neuropsychological, genetic, and biomarker indicators. Among others, statistical models are a promising tool to enhance the clinical detection of early AD. In the present study, early AD was diagnosed by taking into account characteristics related to whether or not a patient was taking specific drugs and a significant protein as a predictor of Amyloid-Beta (Aβ), tau, and ptau [AT(N)] levels among participants. Methods In this study, the optimization of predictive models for the diagnosis of AD pathologies was carried out using a set of baseline features. The model performance was improved by incorporating additional variables associated with patient drugs and protein biomarkers into the model. The diagnostic group consisted of five categories (cognitively normal, significant subjective memory concern, early mildly cognitively impaired, late mildly cognitively impaired, and AD), resulting in a multinomial classification challenge. In particular, we examined the relationship between AD diagnosis and the use of various drugs (calcium and vitamin D supplements, blood-thinning drugs, cholesterol-lowering drugs, and cognitive drugs). We propose a hybrid-clinical model that runs multiple ML models in parallel and then takes the majority's votes, enhancing the accuracy. We also assessed the significance of three cerebrospinal fluid biomarkers, Aβ, tau, and ptau in the diagnosis of AD. We proposed that a hybrid-clinical model be used to simulate the MRI-based data, with five diagnostic groups of individuals, with further refinement that includes preclinical characteristics of the disorder. The proposed design builds a Meta-Model for four different sets of criteria. The set criteria are as follows: to diagnose from baseline features, baseline and drug features, baseline and protein features, and baseline, drug and protein features. Results We were able to attain a maximum accuracy of 97.60% for baseline and protein data. We observed that the constructed model functioned effectively when all five drugs were included and when any single drug was used to diagnose the response variable. Interestingly, the constructed Meta-Model worked well when all three protein biomarkers were included, as well as when a single protein biomarker was utilized to diagnose the response variable. Discussion It is noteworthy that we aimed to construct a pipeline design that incorporates comprehensive methodologies to detect Alzheimer's over wide-ranging input values and variables in the current study. Thus, the model that we developed could be used by clinicians and medical experts to advance Alzheimer's diagnosis and as a starting point for future research into AD and other neurodegenerative syndromes.
Collapse
Affiliation(s)
- Afreen Khan
- Department of Computer Application, Faculty of Engineering & IT, Integral University, Lucknow, India
| | - Swaleha Zubair
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Mohammed Shuaib
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Sheneamer
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Shadab Alam
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Basem Assiri
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
14
|
Zhou L, Shao M, Wang C, Wang Y. An early sepsis prediction model utilizing machine learning and unbalanced data processing in a clinical context. Prev Med Rep 2024; 45:102841. [PMID: 39188971 PMCID: PMC11345914 DOI: 10.1016/j.pmedr.2024.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Background Early and accurate diagnoses of sepsis patients are essential to reduce the mortality. However, the sepsis is still diagnosed in a traditional way in China despite the increasing number of related studies, which may to some extent lead to delays in the treatment. Methods The study included 2,385 patients, including 364 with sepsis, collected from the First Affiliated Hospital of Anhui Medical University and partner hospitals from April to July 2022. External validation was conducted using the MIMIC-III database (over 60,000 patients from 2001 to 2012) and the eICU Collaborative Research Database (139,000 patients from 2014 to 2015). Multiple algorithm models, along with the SHapley Additive exPlanations (SHAP) analysis, are applied to explore the main risk factors for the accurate prediction of the sepsis. Multiple Imputations for filling missing data and the Synthetic Minority Oversampling (SMOTE) balancing method for balancing data are used for the data processing. Result Eighteen diagnostic features are used in the predictive model for early sepsis. The Random Forest model has the best performance among all the models, with an Area Under the Curve (AUC) of 87% and an F1-score (F1) of 77%. Moreover, the interpretation from the SHAP analysis is generally consistent with the current clinical situation. Conclusion The study revealed the relationship between these 18 clinical features and diagnostic outcomes. The results indicate that patients with laboratory values of Systolic Blood Pressure, Albumin, and Heart Rate exceeding certain thresholds are at a high likelihood of developing sepsis.
Collapse
Affiliation(s)
- Luyao Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Min Shao
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cui Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Gupta A, Chauhan R, G S, Shreekumar A. Improving sepsis prediction in intensive care with SepsisAI: A clinical decision support system with a focus on minimizing false alarms. PLOS DIGITAL HEALTH 2024; 3:e0000569. [PMID: 39133661 PMCID: PMC11318852 DOI: 10.1371/journal.pdig.0000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
Prediction of sepsis using machine-learning approaches has recently gained traction. However, the lack of translation of these algorithms into clinical routine remains a major issue. Existing early sepsis detection methods are either based on the older definition of sepsis or do not accurately detect sepsis leading to the high frequency of false-positive alarms. This results in a well-known issue of clinicians' "alarm fatigue", leading to decreased responsiveness and identification, ultimately resulting in delayed clinical intervention. Hence, there is a fundamental, unmet need for a clinical decision system capable of accurate and timely sepsis diagnosis, running at the point of need. In this work, SepsisAI-a deep-learning algorithm based on long short-term memory (LSTM) networks was developed to predict the early onset of hospital-acquired sepsis in real-time for patients admitted to the ICU. The models are trained and validated with data from the PhysioNet Challenge, consisting of 40,336 patient data files from two healthcare systems: Beth Israel Deaconess Medical Center and Emory University Hospital. In the short term, the algorithm tracks frequently measured vital signs, sparsely available lab parameters, demographic features, and certain derived features for making predictions. A real-time alert system, which monitors the trajectory of the predictions, is developed on top of the deep-learning framework to minimize false alarms. On a balanced test dataset, the model achieves an AUROC, AUPRC, sensitivity, and specificity of 0.95, 0.96, 88.19%, and 96.75%, respectively at the patient level. In terms of lookahead time, the model issues a warning at a median of 6 hours (IQR 6 to 20 hours) and raises an alert at a median of 4 hours (IQR 2 to 5 hours) ahead of sepsis onset. Most importantly, the model achieves a false-alarm ratio of 3.18% for alerts, which is significantly less than other sepsis alarm systems. Additionally, on a disease prevalence-based test set, the algorithm reported similar outcomes with AUROC and AUPRC of 0.94 and 0.87, respectively, with sensitivity, and specificity of 97.05%, and 96.75%, respectively. The proposed algorithm might serve as a clinical decision support system to assist clinicians in the accurate and timely diagnosis of sepsis. With exceptionally high specificity and low false-alarm rate, this algorithm also helps mitigate the well-known issue of clinician alert fatigue arising from currently proposed sepsis alarm systems. Consequently, the algorithm partially addresses the challenges of successfully integrating machine-learning algorithms into routine clinical care.
Collapse
Affiliation(s)
- Ankit Gupta
- Center for Innovation in Diagnostics, Siemens Healthcare Private Limited, Bangalore, India
| | - Ruchi Chauhan
- Center for Innovation in Diagnostics, Siemens Healthcare Private Limited, Bangalore, India
| | - Saravanan G
- Center for Innovation in Diagnostics, Siemens Healthcare Private Limited, Bangalore, India
| | - Ananth Shreekumar
- Center for Innovation in Diagnostics, Siemens Healthcare Private Limited, Bangalore, India
| |
Collapse
|
16
|
Scott IA, De Guzman KR, Falconer N, Canaris S, Bonilla O, McPhail SM, Marxen S, Van Garderen A, Abdel-Hafez A, Barras M. Evaluating automated machine learning platforms for use in healthcare. JAMIA Open 2024; 7:ooae031. [PMID: 38863963 PMCID: PMC11165368 DOI: 10.1093/jamiaopen/ooae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Objective To describe development and application of a checklist of criteria for selecting an automated machine learning (Auto ML) platform for use in creating clinical ML models. Materials and Methods Evaluation criteria for selecting an Auto ML platform suited to ML needs of a local health district were developed in 3 steps: (1) identification of key requirements, (2) a market scan, and (3) an assessment process with desired outcomes. Results The final checklist comprising 21 functional and 6 non-functional criteria was applied to vendor submissions in selecting a platform for creating a ML heparin dosing model as a use case. Discussion A team of clinicians, data scientists, and key stakeholders developed a checklist which can be adapted to ML needs of healthcare organizations, the use case providing a relevant example. Conclusion An evaluative checklist was developed for selecting Auto ML platforms which requires validation in larger multi-site studies.
Collapse
Affiliation(s)
- Ian A Scott
- Centre for Health Services Research, University of Queensland, Brisbane, 4102, Australia
- Department of Internal Medicine and Clinical Epidemiology, Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - Keshia R De Guzman
- Department of Pharmacy, Princess Alexandra Hospital, Brisbane, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| | - Nazanin Falconer
- Department of Pharmacy, Princess Alexandra Hospital, Brisbane, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| | - Stephen Canaris
- Digital Health and Informatics, Metro South Health, Brisbane, 4102, Australia
| | - Oscar Bonilla
- Digital Health and Informatics, Metro South Health, Brisbane, 4102, Australia
| | - Steven M McPhail
- Digital Health and Informatics, Metro South Health, Brisbane, 4102, Australia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Sven Marxen
- Pharmacy Service, Logan and Beaudesert Hospitals, Logan, 4131, Australia
| | - Aaron Van Garderen
- Digital Health and Informatics, Metro South Health, Brisbane, 4102, Australia
- Pharmacy Service, Logan and Beaudesert Hospitals, Logan, 4131, Australia
| | - Ahmad Abdel-Hafez
- Digital Health and Informatics, Metro South Health, Brisbane, 4102, Australia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Michael Barras
- Department of Pharmacy, Princess Alexandra Hospital, Brisbane, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| |
Collapse
|
17
|
Bomrah S, Uddin M, Upadhyay U, Komorowski M, Priya J, Dhar E, Hsu SC, Syed-Abdul S. A scoping review of machine learning for sepsis prediction- feature engineering strategies and model performance: a step towards explainability. Crit Care 2024; 28:180. [PMID: 38802973 PMCID: PMC11131234 DOI: 10.1186/s13054-024-04948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Sepsis, an acute and potentially fatal systemic response to infection, significantly impacts global health by affecting millions annually. Prompt identification of sepsis is vital, as treatment delays lead to increased fatalities through progressive organ dysfunction. While recent studies have delved into leveraging Machine Learning (ML) for predicting sepsis, focusing on aspects such as prognosis, diagnosis, and clinical application, there remains a notable deficiency in the discourse regarding feature engineering. Specifically, the role of feature selection and extraction in enhancing model accuracy has been underexplored. OBJECTIVES This scoping review aims to fulfill two primary objectives: To identify pivotal features for predicting sepsis across a variety of ML models, providing valuable insights for future model development, and To assess model efficacy through performance metrics including AUROC, sensitivity, and specificity. RESULTS The analysis included 29 studies across diverse clinical settings such as Intensive Care Units (ICU), Emergency Departments, and others, encompassing 1,147,202 patients. The review highlighted the diversity in prediction strategies and timeframes. It was found that feature extraction techniques notably outperformed others in terms of sensitivity and AUROC values, thus indicating their critical role in improving sepsis prediction models. CONCLUSION Key dynamic indicators, including vital signs and critical laboratory values, are instrumental in the early detection of sepsis. Applying feature selection methods significantly boosts model precision, with models like Random Forest and XG Boost showing promising results. Furthermore, Deep Learning models (DL) reveal unique insights, spotlighting the pivotal role of feature engineering in sepsis prediction, which could greatly benefit clinical practice.
Collapse
Affiliation(s)
- Sherali Bomrah
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
- College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Mohy Uddin
- Research Quality Management Section, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, 11426, Riyadh, Saudi Arabia
| | - Umashankar Upadhyay
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
- School of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Matthieu Komorowski
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College of London, South Kensington Campus, London, UK
| | - Jyoti Priya
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
| | - Eshita Dhar
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan
| | - Shih-Chang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan
- Emergency Department, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan.
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, Taipei, 235, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Su M, Wu H, Chen H, Guo J, Chen Z, Qiu J, Huang J. Early prediction of sepsis-induced respiratory tract infection using a biomarker-based machine-learning algorithm. Scand J Clin Lab Invest 2024; 84:202-210. [PMID: 38683948 DOI: 10.1080/00365513.2024.2346914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/23/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Early and differential diagnosis of sepsis is essential to avoid unnecessary antibiotic use and further reduce patient morbidity and mortality. Here, we aimed to identify predictors of sepsis and advance a machine-learning strategy to predict sepsis-induced respiratory tract infection (RTI). Patients with sepsis and RTI were selected via retrospective analysis, and essential population characteristics and laboratory parameters were recorded. To improve the performance of the primary model and avoid over-fitting, a recursive feature elimination with cross-validation (RFECV) strategy was used to screen the optimal subset of biomarkers and construct nine machine-learning models based on this subset; the average accuracy, precision, recall, and F1-score were used for evaluation of the models. We identified 430 patients with sepsis and 686 patients with RTI. A total of 39 features were collected, with 23 features identified for initial model construction. Using the RFECV algorithm, we found that the XGBoost classifier, which only needed to include seven biomarkers, demonstrated the best performance among all prediction models, with an average accuracy of 89.24 ± 2.28, while the Ridge classifier, which included 11 biomarkers, had an average accuracy of only 83.87 ± 4.69. The remaining models had prediction accuracies greater than 88%. We developed nine models for predicting sepsis using a strategy that combined RFECV with machine learning. Among these models, the XGBoost classifier, which included seven biomarkers, showed the best performance and highest accuracy for predicting sepsis and may be a promising tool for the timely identification of sepsis.
Collapse
Affiliation(s)
- Mingkuan Su
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Haiying Wu
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Hongbin Chen
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Jianfeng Guo
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Zongyun Chen
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Jie Qiu
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| | - Jiancheng Huang
- Department of Laboratory Medicine, Mindong Hospital of Ningde City, Fuan City, China
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan City, China
| |
Collapse
|
19
|
Baddal B, Taner F, Uzun Ozsahin D. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics (Basel) 2024; 14:484. [PMID: 38472956 DOI: 10.3390/diagnostics14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Healthcare-associated infections (HAIs) are the most common adverse events in healthcare and constitute a major global public health concern. Surveillance represents the foundation for the effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive. Artificial intelligence (AI) and machine learning (ML) have the potential to support the development of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient risk stratification as well as the prediction and timely detection and prevention of infections. AI-supported systems have so far been explored for clinical laboratory testing and imaging diagnosis, antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support tools in terms of HAIs. This review aims to provide a comprehensive summary of the current literature on AI applications in the field of HAIs and discuss the future potentials of this emerging technology in infection practice. Following the PRISMA guidelines, this study examined the articles in databases including PubMed and Scopus until November 2023, which were screened based on the inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements in the field, we aim to highlight the potential applications of AI in the field, report related issues and shortcomings and discuss the future directions.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| |
Collapse
|
20
|
Trinkley KE, An R, Maw AM, Glasgow RE, Brownson RC. Leveraging artificial intelligence to advance implementation science: potential opportunities and cautions. Implement Sci 2024; 19:17. [PMID: 38383393 PMCID: PMC10880216 DOI: 10.1186/s13012-024-01346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The field of implementation science was developed to address the significant time delay between establishing an evidence-based practice and its widespread use. Although implementation science has contributed much toward bridging this gap, the evidence-to-practice chasm remains a challenge. There are some key aspects of implementation science in which advances are needed, including speed and assessing causality and mechanisms. The increasing availability of artificial intelligence applications offers opportunities to help address specific issues faced by the field of implementation science and expand its methods. MAIN TEXT This paper discusses the many ways artificial intelligence can address key challenges in applying implementation science methods while also considering potential pitfalls to the use of artificial intelligence. We answer the questions of "why" the field of implementation science should consider artificial intelligence, for "what" (the purpose and methods), and the "what" (consequences and challenges). We describe specific ways artificial intelligence can address implementation science challenges related to (1) speed, (2) sustainability, (3) equity, (4) generalizability, (5) assessing context and context-outcome relationships, and (6) assessing causality and mechanisms. Examples are provided from global health systems, public health, and precision health that illustrate both potential advantages and hazards of integrating artificial intelligence applications into implementation science methods. We conclude by providing recommendations and resources for implementation researchers and practitioners to leverage artificial intelligence in their work responsibly. CONCLUSIONS Artificial intelligence holds promise to advance implementation science methods ("why") and accelerate its goals of closing the evidence-to-practice gap ("purpose"). However, evaluation of artificial intelligence's potential unintended consequences must be considered and proactively monitored. Given the technical nature of artificial intelligence applications as well as their potential impact on the field, transdisciplinary collaboration is needed and may suggest the need for a subset of implementation scientists cross-trained in both fields to ensure artificial intelligence is used optimally and ethically.
Collapse
Affiliation(s)
- Katy E Trinkley
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Adult and Child Center for Outcomes Research and Delivery Science Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Ruopeng An
- Brown School and Division of Computational and Data Sciences at Washington University in St. Louis, St. Louis, MO, USA
| | - Anna M Maw
- Adult and Child Center for Outcomes Research and Delivery Science Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Division of Hospital Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Russell E Glasgow
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Adult and Child Center for Outcomes Research and Delivery Science Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross C Brownson
- Prevention Research Center, Brown School at Washington University in St. Louis, St. Louis, MO, USA
- Department of Surgery, Division of Public Health Sciences, and Alvin J. Siteman Cancer Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Noda Y, Sakaue K, Wada M, Takano M, Nakajima S. Development of Artificial Intelligence for Determining Major Depressive Disorder Based on Resting-State EEG and Single-Pulse Transcranial Magnetic Stimulation-Evoked EEG Indices. J Pers Med 2024; 14:101. [PMID: 38248802 PMCID: PMC10817456 DOI: 10.3390/jpm14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Depression is the disorder with the greatest socioeconomic burdens. Its diagnosis is still based on an operational diagnosis derived from symptoms, and no objective diagnostic indicators exist. Thus, the present study aimed to develop an artificial intelligence (AI) model to aid in the diagnosis of depression from electroencephalography (EEG) data by applying machine learning to resting-state EEG and transcranial magnetic stimulation (TMS)-evoked EEG acquired from patients with depression and healthy controls. Resting-state EEG and single-pulse TMS-EEG were acquired from 60 patients and 60 healthy controls. Power spectrum analysis, phase synchronization analysis, and phase-amplitude coupling analysis were conducted on EEG data to extract feature candidates to apply different types of machine learning algorithms. Furthermore, to address the limitation of the sample size, dimensionality reduction was performed in a manner to increase the quality of information by featuring robust neurophysiological metrics that showed significant differences between the two groups. Then, nine different machine learning models were applied to the data. For the EEG data, we created models combining four modalities, including (1) resting-state EEG, (2) pre-stimulus TMS-EEG, (3) post-stimulus TMS-EEG, and (4) differences between pre- and post-stimulus TMS-EEG, and evaluated their performance. We found that the best estimation performance (a mean area under the curve of 0.922) was obtained using receiver operating characteristic curve analysis when linear discriminant analysis (LDA) was applied to the combination of the four feature sets. This study showed that by using TMS-EEG neurophysiological indices as features, it is possible to develop a depression decision-support AI algorithm that exhibits high discrimination accuracy.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kento Sakaue
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of DX Promotion, Teijin Limited, Tokyo 100-8585, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Teijin Pharma Limited, Tokyo 100-8585, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
22
|
Yong L, Zhenzhou L. Deep learning-based prediction of in-hospital mortality for sepsis. Sci Rep 2024; 14:372. [PMID: 38172160 PMCID: PMC10764335 DOI: 10.1038/s41598-023-49890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
As a serious blood infection disease, sepsis is characterized by a high mortality risk and many complications. Accurate assessment of mortality risk of patients with sepsis can help physicians in Intensive Care Unit make optimal clinical decisions, which in turn can effectively save patients' lives. However, most of the current clinical models used for assessing mortality risk in sepsis patients are based on conventional indicators. Unfortunately, some of the conventional indicators have been shown to be inapplicable in the accurate clinical diagnosis nowadays. Meanwhile, traditional evaluation models only focus on a small amount of personal data, causing misdiagnosis of sepsis patients. We refine the core indicators for mortality risk assessment of sepsis from massive clinical electronic medical records with machine learning, and propose a new mortality risk assessment model, DGFSD, for sepsis patients based on deep learning. The DGFSD model can not only learn individual clinical information about unassessed patients, but also obtain information about the structure of the similarity graph between diagnosed patients and patients to be assessed. Numerous experiments have shown that the accuracy of the DGFSD model is superior to baseline methods, and can significantly improve the efficiency of clinical auxiliary diagnosis.
Collapse
Affiliation(s)
- Li Yong
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Liu Zhenzhou
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
23
|
Zhang H, Wang C, Yang N. Diagnostic performance of machine-learning algorithms for sepsis prediction: An updated meta-analysis. Technol Health Care 2024; 32:4291-4307. [PMID: 38968031 PMCID: PMC11613038 DOI: 10.3233/thc-240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/02/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Early identification of sepsis has been shown to significantly improve patient prognosis. OBJECTIVE Therefore, the aim of this meta-analysis is to systematically evaluate the diagnostic efficacy of machine-learning algorithms for sepsis prediction. METHODS Systematic searches were conducted in PubMed, Embase and Cochrane databases, covering literature up to December 2023. The keywords included machine learning, sepsis and prediction. After screening, data were extracted and analysed from studies meeting the inclusion criteria. Key evaluation metrics included sensitivity, specificity and the area under the curve (AUC) for diagnostic accuracy. RESULTS The meta-analysis included a total of 21 studies with a data sample size of 4,158,941. Overall, the pooled sensitivity was 0.82 (95% confidence interval [CI] = 0.70-0.90; P< 0.001; I2= 99.7%), the specificity was 0.91 (95% CI = 0.86-0.94; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.91-0.96). The subgroup analysis revealed that in the emergency department setting (6 studies), the pooled sensitivity was 0.79 (95% CI = 0.68-0.87; P< 0.001; I2= 99.6%), the specificity was 0.94 (95% CI 0.90-0.97; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.92-0.96). In the Intensive Care Unit setting (11 studies), the sensitivity was 0.91 (95% CI = 0.75-0.97; P< 0.001; I2= 98.3%), the specificity was 0.85 (95% CI = 0.75-0.92; P< 0.001; I2= 99.9%), and the AUC was 0.93 (95% CI = 0.91-0.95). Due to the limited number of studies in the in-hospital and mixed settings (n< 3), no pooled analysis was performed. CONCLUSION Machine-learning algorithms have demonstrated excellent diagnostic accuracy in predicting the occurrence of sepsis, showing potential for clinical application.
Collapse
Affiliation(s)
| | | | - Ning Yang
- Department of Pharmacy, Zhang Jiakou First Hospital, Zhangjiakou, Hebei, China
| |
Collapse
|
24
|
Smith CM, Weathers AL, Lewis SL. An overview of clinical machine learning applications in neurology. J Neurol Sci 2023; 455:122799. [PMID: 37979413 DOI: 10.1016/j.jns.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Machine learning techniques for clinical applications are evolving, and the potential impact this will have on clinical neurology is important to recognize. By providing a broad overview on this growing paradigm of clinical tools, this article aims to help healthcare professionals in neurology prepare to navigate both the opportunities and challenges brought on through continued advancements in machine learning. This narrative review first elaborates on how machine learning models are organized and implemented. Machine learning tools are then classified by clinical application, with examples of uses within neurology described in more detail. Finally, this article addresses limitations and considerations regarding clinical machine learning applications in neurology.
Collapse
Affiliation(s)
- Colin M Smith
- Lehigh Valley Fleming Neuroscience Institute, 1250 S Cedar Crest Blvd., Allentown, PA 18103, USA
| | - Allison L Weathers
- Cleveland Clinic Information Technology Division, 9500 Euclid Ave. Cleveland, OH 44195, USA
| | - Steven L Lewis
- Lehigh Valley Fleming Neuroscience Institute, 1250 S Cedar Crest Blvd., Allentown, PA 18103, USA.
| |
Collapse
|
25
|
Fan K, Cao W, Chang H, Tian F. Predicting prognosis in patients with stroke treated with intravenous alteplase through blood pressure changes: A machine learning-based approach. J Clin Hypertens (Greenwich) 2023; 25:1009-1018. [PMID: 37843065 PMCID: PMC10631101 DOI: 10.1111/jch.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
The use of machine learning (ML) in predicting disease prognosis has increased, and researchers have adopted different methods for variable selection to optimize early screening for AIS to determine its prognosis as soon as possible. We aimed to improve the understanding of the predictors of poor functional outcome at three months after discharge in AIS patients treated with intravenous thrombolysis and to construct a highly effective prognostic model to improve prediction accuracy. And four ML methods (random forest, support vector machine, naive Bayesian, and logistic regression) were used to screen and recombine the features for construction of an ML prognostic model. A total of 352 patients that had experienced AIS and had been treated with intravenous thrombolysis were recruited. The variables included in the model were NIHSS on admission, age, white blood cell count, percentage of neutrophils and triglyceride after thrombolysis, tirofiban, early neurological deterioration, early neurological improvement, and BP at each time point or period. The model's area under the curve for predicting 30-day modified Rankin scale was 0.790 with random forest, 0.542 with support vector machine, 0.411 with naive Bayesian, and 0.661 with logistic regression. The random forest model was shown to accurately evaluate the prognosis of AIS patients treated with intravenous thrombolysis, and therefore they may be helpful for accurate and personalized secondary prevention. The model offers improved prediction accuracy that may reduce rates of misdiagnosis and missed diagnosis in patients with AIS.
Collapse
Affiliation(s)
- Kaiting Fan
- Department of NeurologyXuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric DiseaseBeijingChina
| | - Wenya Cao
- Department of NeurologyXuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric DiseaseBeijingChina
| | - Hong Chang
- Department of NeurologyXuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric DiseaseBeijingChina
| | - Fei Tian
- Department of NeurologyXuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric DiseaseBeijingChina
| |
Collapse
|
26
|
Yang J, Hao S, Huang J, Chen T, Liu R, Zhang P, Feng M, He Y, Xiao W, Hong Y, Zhang Z. The application of artificial intelligence in the management of sepsis. MEDICAL REVIEW (2021) 2023; 3:369-380. [PMID: 38283255 PMCID: PMC10811352 DOI: 10.1515/mr-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Sepsis is a complex and heterogeneous syndrome that remains a serious challenge to healthcare worldwide. Patients afflicted by severe sepsis or septic shock are customarily placed under intensive care unit (ICU) supervision, where a multitude of apparatus is poised to produce high-granularity data. This reservoir of high-quality data forms the cornerstone for the integration of AI into clinical practice. However, existing reviews currently lack the inclusion of the latest advancements. This review examines the evolving integration of artificial intelligence (AI) in sepsis management. Applications of artificial intelligence include early detection, subtyping analysis, precise treatment and prognosis assessment. AI-driven early warning systems provide enhanced recognition and intervention capabilities, while profiling analyzes elucidate distinct sepsis manifestations for targeted therapy. Precision medicine harnesses the potential of artificial intelligence for pathogen identification, antibiotic selection, and fluid optimization. In conclusion, the seamless amalgamation of artificial intelligence into the domain of sepsis management heralds a transformative shift, ushering in novel prospects to elevate diagnostic precision, therapeutic efficacy, and prognostic acumen. As AI technologies develop, their impact on shaping the future of sepsis care warrants ongoing research and thoughtful implementation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Sicheng Hao
- Duke University School of Medicine, Durham, NC, USA
| | - Jiajie Huang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Tianqi Chen
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Ruoqi Liu
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Mengling Feng
- Saw Swee Hock School of Public Health and Institute of Data science, National University of Singapore, Singapore, Singapore
| | - Yang He
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Wei Xiao
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| |
Collapse
|
27
|
Lennon MJ, Harmer C. Machine learning prediction will be part of future treatment of depression. Aust N Z J Psychiatry 2023; 57:1316-1323. [PMID: 36823974 DOI: 10.1177/00048674231158267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Machine learning (ML) is changing the way that medicine is practiced. While already clinically utilised in diagnostic radiology and outcome prediction in intensive care unit, ML approaches in psychiatry remain nascent. Implementing ML algorithms in psychiatry, particularly in the treatment of depression, is significantly more challenging than other areas of medicine in part because of the less demarcated disease nosology and greater variability in practice. Given the current exiguous capacity of clinicians to predict patient and treatment outcomes in depression, there is a significantly greater need for better predictive capability. Early studies have shown promising results. ML predictions were significantly better than chance within the sequenced treatment alternatives to relieve depression (STAR*D) trial (accuracy 64.6%, p < 0.0001) and combining medications to enhance depression outcomes (COMED) randomised Controlled Trial (RCT) (accuracy 59.6%, p = 0.043), with similar results found in larger scale, retrospective studies. The greater flexibility and dimensionality of ML approaches has been demonstrated in studies incorporating diverse input variables including electroencephalography scans, achieving 88% accuracy for treatment response, and cognitive test scores, achieving up to 72% accuracy for treatment response. The predicting response to depression treatment (PReDicT) trial tested ML informed prescribing of antidepressants against standard therapy and found there was both better outcomes for anxiety and functional endpoints despite the algorithm only having a balanced accuracy of 57.5%. Impeding the progress of ML algorithms in psychiatry are pragmatic hurdles, including accuracy, expense, acceptability and comprehensibility, and ethical hurdles, including medicolegal liability, clinical autonomy and data privacy. Notwithstanding impediments, it is clear that ML prediction algorithms will be part of depression treatment in the future and clinicians should be prepared for their arrival.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Psychiatry, University of Oxford, Oxford, UK
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
28
|
Yang Z, Cui X, Song Z. Predicting sepsis onset in ICU using machine learning models: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:635. [PMID: 37759175 PMCID: PMC10523763 DOI: 10.1186/s12879-023-08614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by an abnormal response of the body to infection and imposes a significant health and economic burden worldwide due to its high mortality rate. Early recognition of sepsis is crucial for effective treatment. This study aimed to systematically evaluate the performance of various machine learning models in predicting the onset of sepsis. METHODS We conducted a comprehensive search of the Cochrane Library, PubMed, Embase, and Web of Science databases, covering studies from database inception to November 14, 2022. We used the PROBAST tool to assess the risk of bias. We calculated the predictive performance for sepsis onset using the C-index and accuracy. We followed the PRISMA guidelines for this study. RESULTS We included 23 eligible studies with a total of 4,314,145 patients and 26 different machine learning models. The most frequently used models in the studies were random forest (n = 9), extreme gradient boost (n = 7), and logistic regression (n = 6) models. The random forest (test set n = 9, acc = 0.911) and extreme gradient boost (test set n = 7, acc = 0.957) models were the most accurate based on our analysis of the predictive performance. In terms of the C-index outcome, the random forest (n = 6, acc = 0.79) and extreme gradient boost (n = 7, acc = 0.83) models showed the highest performance. CONCLUSION Machine learning has proven to be an effective tool for predicting sepsis at an early stage. However, to obtain more accurate results, additional machine learning methods are needed. In our research, we discovered that the XGBoost and random forest models exhibited the best predictive performance and were most frequently utilized for predicting the onset of sepsis. TRIAL REGISTRATION CRD42022384015.
Collapse
Affiliation(s)
- Zhenyu Yang
- Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoju Cui
- Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Zhe Song
- Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
29
|
Bin C, Li Q, Tang J, Dai C, Jiang T, Xie X, Qiu M, Chen L, Yang S. Machine learning models for predicting the risk factor of carotid plaque in cardiovascular disease. Front Cardiovasc Med 2023; 10:1178782. [PMID: 37808888 PMCID: PMC10556651 DOI: 10.3389/fcvm.2023.1178782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Cardiovascular disease (CVD) is a group of diseases involving the heart or blood vessels and represents a leading cause of death and disability worldwide. Carotid plaque is an important risk factor for CVD that can reflect the severity of atherosclerosis. Accordingly, developing a prediction model for carotid plaque formation is essential to assist in the early prevention and management of CVD. Methods In this study, eight machine learning algorithms were established, and their performance in predicting carotid plaque risk was compared. Physical examination data were collected from 4,659 patients and used for model training and validation. The eight predictive models based on machine learning algorithms were optimized using the above dataset and 10-fold cross-validation. The Shapley Additive Explanations (SHAP) tool was used to compute and visualize feature importance. Then, the performance of the models was evaluated according to the area under the receiver operating characteristic curve (AUC), feature importance, accuracy and specificity. Results The experimental results indicated that the XGBoost algorithm outperformed the other machine learning algorithms, with an AUC, accuracy and specificity of 0.808, 0.749 and 0.762, respectively. Moreover, age, smoke, alcohol drink and BMI were the top four predictors of carotid plaque formation. It is feasible to predict carotid plaque risk using machine learning algorithms. Conclusions This study indicates that our models can be applied to routine chronic disease management procedures to enable more preemptive, broad-based screening for carotid plaque and improve the prognosis of CVD patients.
Collapse
Affiliation(s)
- Chengling Bin
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| | - Qin Li
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| | - Jing Tang
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| | - Chaorong Dai
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| | - Ting Jiang
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| | - Xiufang Xie
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Neijiang, Neijiang, China
| | - Min Qiu
- Special Inspection Department, The First People’s Hospital of Neijiang, Neijiang, China
| | - Lumiao Chen
- Laboratory Department, The First People’s Hospital of Neijiang, Neijiang, China
| | - Shaorong Yang
- Health Management Section, The First People’s Hospital of Neijiang, Neijiang, China
| |
Collapse
|
30
|
Liu F, Yao J, Liu C, Shou S. Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis. BMC Surg 2023; 23:267. [PMID: 37658375 PMCID: PMC10474758 DOI: 10.1186/s12893-023-02151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND This study aimed to construct predictive models for the risk of sepsis in patients with Acute pancreatitis (AP) using machine learning methods and compared optimal one with the logistic regression (LR) model and scoring systems. METHODS In this retrospective cohort study, data were collected from the Medical Information Mart for Intensive Care III (MIMIC III) database between 2001 and 2012 and the MIMIC IV database between 2008 and 2019. Patients were randomly divided into training and test sets (8:2). The least absolute shrinkage and selection operator (LASSO) regression plus 5-fold cross-validation were used to screen and confirm the predictive factors. Based on the selected predictive factors, 6 machine learning models were constructed, including support vector machine (SVM), K-nearest neighbour (KNN), multi-layer perceptron (MLP), LR, gradient boosting decision tree (GBDT) and adaptive enhancement algorithm (AdaBoost). The models and scoring systems were evaluated and compared using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and the area under the curve (AUC). RESULTS A total of 1, 672 patients were eligible for participation. In the training set, 261 AP patients (19.51%) were diagnosed with sepsis. The predictive factors for the risk of sepsis in AP patients included age, insurance, vasopressors, mechanical ventilation, Glasgow Coma Scale (GCS), heart rate, respiratory rate, temperature, SpO2, platelet, red blood cell distribution width (RDW), International Normalized Ratio (INR), and blood urea nitrogen (BUN). The AUC of the GBDT model for sepsis prediction in the AP patients in the testing set was 0.985. The GBDT model showed better performance in sepsis prediction than the LR, systemic inflammatory response syndrome (SIRS) score, bedside index for severity in acute pancreatitis (BISAP) score, sequential organ failure assessment (SOFA) score, quick-SOFA (qSOFA), and simplified acute physiology score II (SAPS II). CONCLUSION The present findings suggest that compared to the classical LR model and SOFA, qSOFA, SAPS II, SIRS, and BISAP scores, the machine learning model-GBDT model had a better performance in predicting sepsis in the AP patients, which is a useful tool for early identification of high-risk patients and timely clinical interventions.
Collapse
Affiliation(s)
- Fei Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Jie Yao
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, P.R. China
| | - Chunyan Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, P.R. China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
| |
Collapse
|
31
|
Islam KR, Prithula J, Kumar J, Tan TL, Reaz MBI, Sumon MSI, Chowdhury MEH. Machine Learning-Based Early Prediction of Sepsis Using Electronic Health Records: A Systematic Review. J Clin Med 2023; 12:5658. [PMID: 37685724 PMCID: PMC10488449 DOI: 10.3390/jcm12175658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Sepsis, a life-threatening infection-induced inflammatory condition, has significant global health impacts. Timely detection is crucial for improving patient outcomes as sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable attention for timely intervention. METHODS PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality. RESULTS This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation. CONCLUSIONS This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.
Collapse
Affiliation(s)
- Khandaker Reajul Islam
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Johayra Prithula
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mamun Bin Ibne Reaz
- Department of Electrical and Electronic Engineering, Independent University, Bangladesh Bashundhara, Dhaka 1229, Bangladesh
| | - Md. Shaheenur Islam Sumon
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | | |
Collapse
|
32
|
Wang Y, Xiao Y, Zhang Y. A systematic comparison of machine learning algorithms to develop and validate prediction model to predict heart failure risk in middle-aged and elderly patients with periodontitis (NHANES 2009 to 2014). Medicine (Baltimore) 2023; 102:e34878. [PMID: 37653785 PMCID: PMC10470756 DOI: 10.1097/md.0000000000034878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Periodontitis is increasingly associated with heart failure, and the goal of this study was to develop and validate a prediction model based on machine learning algorithms for the risk of heart failure in middle-aged and elderly participants with periodontitis. We analyzed data from a total of 2876 participants with a history of periodontitis from the National Health and Nutrition Examination Survey (NHANES) 2009 to 2014, with a training set of 1980 subjects with periodontitis from the NHANES 2009 to 2012 and an external validation set of 896 subjects from the NHANES 2013 to 2014. The independent risk factors for heart failure were identified using univariate and multivariate logistic regression analysis. Machine learning algorithms such as logistic regression, k-nearest neighbor, support vector machine, random forest, gradient boosting machine, and multilayer perceptron were used on the training set to construct the models. The performance of the machine learning models was evaluated using 10-fold cross-validation on the training set and receiver operating characteristic curve (ROC) analysis in the validation set. Based on the results of univariate logistic regression and multivariate logistic regression, it was found that age, race, myocardial infarction, and diabetes mellitus status were independent predictors of the risk of heart failure in participants with periodontitis. Six machine learning models, including logistic regression, K-nearest neighbor, support vector machine, random forest, gradient boosting machine, and multilayer perceptron, were built on the training set, respectively. The area under the ROC for the 6 models was obtained using 10-fold cross-validation with values of 0 848, 0.936, 0.859, 0.889, 0.927, and 0.666, respectively. The areas under the ROC on the external validation set were 0.854, 0.949, 0.647, 0.933, 0.855, and 0.74, respectively. K-nearest neighbor model got the best prediction performance across all models. Out of 6 machine learning models, the K-nearest neighbor algorithm model performed the best. The prediction model offers early, individualized diagnosis and treatment plans and assists in identifying the risk of heart failure occurrence in middle-aged and elderly patients with periodontitis.
Collapse
Affiliation(s)
- Yicheng Wang
- Affiliated Fuzhou First Hospital of Fujian Medical University, Department of Cardiovascular Medicine, Fuzhou, Fujian, China
- Fujian Medical University, The Third Clinical Medical College, Fuzhou, Fujian, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, Fujian, China
| | - Yuan Xiao
- Affiliated Fuzhou First Hospital of Fujian Medical University, Department of Cardiovascular Medicine, Fuzhou, Fujian, China
- Fujian Medical University, The Third Clinical Medical College, Fuzhou, Fujian, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, Fujian, China
| | - Yan Zhang
- Affiliated Fuzhou First Hospital of Fujian Medical University, Department of Cardiovascular Medicine, Fuzhou, Fujian, China
- Fujian Medical University, The Third Clinical Medical College, Fuzhou, Fujian, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Hu F, Zhu J, Zhang S, Wang C, Zhang L, Zhou H, Shi H. A predictive model for the risk of sepsis within 30 days of admission in patients with traumatic brain injury in the intensive care unit: a retrospective analysis based on MIMIC-IV database. Eur J Med Res 2023; 28:290. [PMID: 37596695 PMCID: PMC10436454 DOI: 10.1186/s40001-023-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023] Open
Abstract
PURPOSE Traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) are at a high risk of infection and sepsis. However, there are few studies on predicting secondary sepsis in TBI patients in the ICU. This study aimed to build a prediction model for the risk of secondary sepsis in TBI patients in the ICU, and provide effective information for clinical diagnosis and treatment. METHODS Using the MIMIC IV database version 2.0 (Medical Information Mart for Intensive Care IV), we searched data on TBI patients admitted to ICU and considered them as a study cohort. The extracted data included patient demographic information, laboratory indicators, complications, and other clinical data. The study cohort was divided into a training cohort and a validation cohort. In the training cohort, variables were screened by LASSO (Least absolute shrinkage and selection operator) regression and stepwise Logistic regression to assess the predictive ability of each feature on the incidence of patients. The screened variables were included in the final Logistic regression model. Finally, the decision curve, calibration curve, and receiver operating character (ROC) were used to test the performance of the model. RESULTS Finally, a total of 1167 patients were included in the study, and these patients were randomly divided into the training (N = 817) and validation (N = 350) cohorts at a ratio of 7:3. In the training cohort, seven features were identified as key predictors of secondary sepsis in TBI patients in the ICU, including acute kidney injury (AKI), anemia, invasive ventilation, GCS (Glasgow Coma Scale) score, lactic acid, and blood calcium level, which were included in the final model. The areas under the ROC curve in the training cohort and the validation cohort were 0.756 and 0.711, respectively. The calibration curve and ROC curve show that the model has favorable predictive accuracy, while the decision curve shows that the model has favorable clinical benefits with good and robust predictive efficiency. CONCLUSION We have developed a nomogram model for predicting secondary sepsis in TBI patients admitted to the ICU, which can provide useful predictive information for clinical decision-making.
Collapse
Affiliation(s)
- Fangqi Hu
- Department of Neurosurgery, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Jiaqiu Zhu
- Department of Neurosurgery, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, Jiangsu, China
| | - Sheng Zhang
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, China
| | - Cheng Wang
- Department of Neurosurgery, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Liangjia Zhang
- Department of Neurosurgery, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Hui Zhou
- Department of Neurosurgery, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, 222000, Jiangsu, China.
| | - Hui Shi
- Department of Neurosurgery, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| |
Collapse
|
34
|
She H, Tan L, Wang Y, Du Y, Zhou Y, Zhang J, Du Y, Guo N, Wu Z, Li Q, Bao D, Mao Q, Hu Y, Liu L, Li T. Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis. Front Immunol 2023; 14:1181697. [PMID: 37180171 PMCID: PMC10172510 DOI: 10.3389/fimmu.2023.1181697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Background To identify differentially expressed lipid metabolism-related genes (DE-LMRGs) responsible for immune dysfunction in sepsis. Methods The lipid metabolism-related hub genes were screened using machine learning algorithms, and the immune cell infiltration of these hub genes were assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of these hub genes at the single-cell level were validated by comparing multiregional immune landscapes between septic patients (SP) and healthy control (HC). Then, the support vector machine-recursive feature elimination (SVM-RFE) algorithm was conducted to compare the significantly altered metabolites critical to hub genes between SP and HC. Furthermore, the role of the key hub gene was verified in sepsis rats and LPS-induced cardiomyocytes, respectively. Results A total of 508 DE-LMRGs were identified between SP and HC, and 5 hub genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were screened. Then, we found an immunosuppressive microenvironment in sepsis. The role of hub genes in immune cells was further confirmed by the single-cell RNA landscape. Moreover, significantly altered metabolites were mainly enriched in lipid metabolism-related signaling pathways and were associated with MAPK14. Finally, inhibiting MAPK14 decreased the levels of inflammatory cytokines and improved the survival and myocardial injury of sepsis. Conclusion The lipid metabolism-related hub genes may have great potential in prognosis prediction and precise treatment for sepsis patients.
Collapse
Affiliation(s)
- Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yunxia Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ningke Guo
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhengbin Wu
- Department of Intensive Care Unit, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
35
|
Moazemi S, Vahdati S, Li J, Kalkhoff S, Castano LJV, Dewitz B, Bibo R, Sabouniaghdam P, Tootooni MS, Bundschuh RA, Lichtenberg A, Aubin H, Schmid F. Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review. Front Med (Lausanne) 2023; 10:1109411. [PMID: 37064042 PMCID: PMC10102653 DOI: 10.3389/fmed.2023.1109411] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Background Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare.
Collapse
Affiliation(s)
- Sobhan Moazemi
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sahar Vahdati
- Institute for Applied Informatics (InfAI), Dresden, Germany
| | - Jason Li
- Institute for Applied Informatics (InfAI), Dresden, Germany
| | - Sebastian Kalkhoff
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Luis J. V. Castano
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bastian Dewitz
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Roman Bibo
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Mohammad S. Tootooni
- Department of Health Informatics and Data Science, Loyola University Chicago, Chicago, IL, United States
| | - Ralph A. Bundschuh
- Nuclear Medicine, Medical Faculty, University Augsburg, Augsburg, Germany
| | - Artur Lichtenberg
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hug Aubin
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Falko Schmid
- Digital Health Lab Düsseldorf, Department of Cardiovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Aguirre U, Urrechaga E. Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study. Clin Chem Lab Med 2023; 61:356-365. [PMID: 36351434 DOI: 10.1515/cclm-2022-0713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To compare the artificial intelligence algorithms as powerful machine learning methods for evaluating patients with suspected sepsis using data from routinely available blood tests performed on arrival at the hospital. Results were compared with those obtained from the classical logistic regression method. METHODS The study group consisted of consecutive patients with fever and suspected infection admitted to the Emergency Department. The complete blood counts (CBC) were acquired using the Mindray BC-6800 Plus analyser (Mindray Diagnostics, Shenzhen, China). Cell Population Data (CPD) were also recorded. The ML and artificial intelligence (AI) models were developed; their performance was evaluated using several indicators, such as the area under the receiver operating curve (AUC), calibration plots and decision curve analysis (DCA). RESULTS Overall, all the tested approaches obtained an AUC>0.90. The logistic regression (LR) performed well compared to the ML/AI models. The naïve Bayes and the K-nearest neighbour (KNN) methods did not show good calibration properties. The multi-layer perceptron (MLP) model was the best in terms of discrimination, calibration and clinical usefulness. CONCLUSIONS The best performance in the early detection of sepsis was achieved using the ML and AI models. However, external validation studies are needed to strengthen model derivation and procedure updating.
Collapse
Affiliation(s)
- Urko Aguirre
- Research Unit, Osakidetza Basque Health Service, Barrualde-Galdakao Integrated Health Organisation, Galdakao-Usansolo Hospital, Galdakao, Spain
- Kronikgune Institute for Health Services Research, Barakaldo, Spain
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Galdakao, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Galdakao, Spain
| | - Eloísa Urrechaga
- CORE Laboratory, Hospital Galdakao-Usansolo, Galdakao, Vizcaya, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Vizcaya, Spain
| |
Collapse
|
37
|
Duan Y, Huo J, Chen M, Hou F, Yan G, Li S, Wang H. Early prediction of sepsis using double fusion of deep features and handcrafted features. APPL INTELL 2023; 53:1-17. [PMID: 36685641 PMCID: PMC9843111 DOI: 10.1007/s10489-022-04425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Sepsis is a life-threatening medical condition that is characterized by the dysregulated immune system response to infections, having both high morbidity and mortality rates. Early prediction of sepsis is critical to the decrease of mortality. This paper presents a novel early warning model called Double Fusion Sepsis Predictor (DFSP) for sepsis onset. DFSP is a double fusion framework that combines the benefits of early and late fusion strategies. First, a hybrid deep learning model that combines both the convolutional and recurrent neural networks to extract deep features is proposed. Second, deep features and handcrafted features, such as clinical scores, are concatenated to build the joint feature representation (early fusion). Third, several tree-based models based on joint feature representation are developed to generate the risk scores of sepsis onset that are combined with an End-to-End neural network for final sepsis detection (late fusion). To evaluate DFSP, a retrospective study was conducted, which included patients admitted to the ICUs of a hospital in Shanghai China. The results demonstrate that the DFSP outperforms state-of-the-art approaches in early sepsis prediction.
Collapse
Affiliation(s)
- Yongrui Duan
- School of Economics & Management, Tongji University, Shanghai, China
| | - Jiazhen Huo
- School of Economics & Management, Tongji University, Shanghai, China
| | - Mingzhou Chen
- School of Economics & Management, Tongji University, Shanghai, China
| | - Fenggang Hou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Guoliang Yan
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shufang Li
- Emergency Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haihui Wang
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Tang M, Mu F, Cui C, Zhao JY, Lin R, Sun KX, Guan Y, Wang JW. Research frontiers and trends in the application of artificial intelligence to sepsis: A bibliometric analysis. Front Med (Lausanne) 2023; 9:1043589. [PMID: 36714139 PMCID: PMC9878129 DOI: 10.3389/fmed.2022.1043589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Background With the increasing interest of academics in the application of artificial intelligence to sepsis, thousands of papers on this field had been published in the past few decades. It is difficult for researchers to understand the themes and latest research frontiers in this field from a multi-dimensional perspective. Consequently, the purpose of this study is to analyze the relevant literature in the application of artificial intelligence to sepsis through bibliometrics software, so as to better understand the development status, study the core hotspots and future development trends of this field. Methods We collected relevant publications in the application of artificial intelligence to sepsis from the Web of Science Core Collection in 2000 to 2021. The type of publication was limited to articles and reviews, and language was limited to English. Research cooperation network, journals, cited references, keywords in this field were visually analyzed by using CiteSpace, VOSviewer, and COOC software. Results A total of 8,481 publications in the application of artificial intelligence to sepsis between 2000 and 2021 were included, involving 8,132 articles and 349 reviews. Over the past 22 years, the annual number of publications had gradually increased exponentially. The USA was the most productive country, followed by China. Harvard University, Schuetz, Philipp, and Intensive Care Medicine were the most productive institution, author, and journal, respectively. Vincent, Jl and Critical Care Medicine were the most cited author and cited journal, respectively. Several conclusions can be drawn from the analysis of the cited references, including the following: screening and identification of sepsis biomarkers, treatment and related complications of sepsis, and precise treatment of sepsis. Moreover, there were a spike in searches relating to machine learning, antibiotic resistance and accuracy based on burst detection analysis. Conclusion This study conducted a comprehensive and objective analysis of the publications on the application of artificial intelligence in sepsis. It can be predicted that precise treatment of sepsis through machine learning technology is still research hotspot in this field.
Collapse
|
39
|
Lu B, Pan X, Wang B, Jin C, Liu C, Wang M, Shi Y. Development of a Nomogram for Predicting Mortality Risk in Sepsis Patients During Hospitalization: A Retrospective Study. Infect Drug Resist 2023; 16:2311-2320. [PMID: 37155474 PMCID: PMC10122849 DOI: 10.2147/idr.s407202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Purpose We attempted to establish a model for predicting the mortality risk of sepsis patients during hospitalization. Patients and Methods Data on patients with sepsis were collected from a clinical record mining database, who were hospitalized at the Affiliated Dongyang Hospital of Wenzhou Medical University between January 2013 and August 2022. These included patients were divided into modeling and validation groups. In the modeling group, the independent risk factors of death during hospitalization were determined using univariate and multi-variate regression analyses. After stepwise regression analysis (both directions), a nomogram was drawn. The discrimination ability of the model was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the GiViTI calibration chart assessed the model calibration. The Decline Curve Analysis (DCA) was performed to evaluate the clinical effectiveness of the prediction model. Among the validation group, the logistic regression model was compared to the models established by the SOFA scoring system, random forest method, and stacking method. Results A total of 1740 subjects were included in this study, 1218 in the modeling population and 522 in the validation population. The results revealed that serum cholinesterase, total bilirubin, respiratory failure, lactic acid, creatinine, and pro-brain natriuretic peptide were the independent risk factors of death. The AUC values in the modeling group and validation group were 0.847 and 0.826. The P values of calibration charts in the two population sets were 0.838 and 0.771. The DCA curves were above the two extreme curves. Moreover, the AUC values of the models established by the SOFA scoring system, random forest method, and stacking method in the validation group were 0.777, 0.827, and 0.832, respectively. Conclusion The nomogram model established by combining multiple risk factors could effectively predict the mortality risk of sepsis patients during hospitalization.
Collapse
Affiliation(s)
- Bin Lu
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Bin Wang
- Department of Emergency, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
| | - Chenyuan Jin
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
| | - Chenxin Liu
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
| | - Mengqi Wang
- Department of Neurology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
| | - Yunzhen Shi
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, People’s Republic of China
- Correspondence: Yunzhen Shi, Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, People’s Republic of China, Email
| |
Collapse
|
40
|
Pieroni M, Olier I, Ortega-Martorell S, Johnston BW, Welters ID. In-Hospital Mortality of Sepsis Differs Depending on the Origin of Infection: An Investigation of Predisposing Factors. Front Med (Lausanne) 2022; 9:915224. [PMID: 35911394 PMCID: PMC9326002 DOI: 10.3389/fmed.2022.915224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a heterogeneous syndrome characterized by a variety of clinical features. Analysis of large clinical datasets may serve to define groups of sepsis with different risks of adverse outcomes. Clinical experience supports the concept that prognosis, treatment, severity, and time course of sepsis vary depending on the source of infection. We analyzed a large publicly available database to test this hypothesis. In addition, we developed prognostic models for the three main types of sepsis: pulmonary, urinary, and abdominal sepsis. We used logistic regression using routinely available clinical data for mortality prediction in each of these groups. The data was extracted from the eICU collaborative research database, a multi-center intensive care unit with over 200,000 admissions. Sepsis cohorts were defined using admission diagnosis codes. We used univariate and multivariate analyses to establish factors relevant for outcome prediction in all three cohorts of sepsis (pulmonary, urinary and abdominal). For logistic regression, input variables were automatically selected using a sequential forward search algorithm over 10 dataset instances. Receiver operator characteristics were generated for each model and compared with established prognostication tools (APACHE IV and SOFA). A total of 3,958 sepsis admissions were included in the analysis. Sepsis in-hospital mortality differed depending on the cause of infection: abdominal 18.93%, pulmonary 19.27%, and renal 12.81%. Higher average heart rate was associated with increased mortality risk. Increased average Mean Arterial Pressure (MAP) showed a reduced mortality risk across all sepsis groups. Results from the LR models found significant factors that were relevant for specific sepsis groups. Our models outperformed APACHE IV and SOFA scores with AUC between 0.63 and 0.74. Predictive power decreased over time, with the best results achieved for data extracted for the first 24 h of admission. Mortality varied significantly between the three sepsis groups. We also demonstrate that factors of importance show considerable heterogeneity depending on the source of infection. The factors influencing in-hospital mortality vary depending on the source of sepsis which may explain why most sepsis trials have failed to identify an effective treatment. The source of infection should be considered when considering mortality risk. Planning of sepsis treatment trials may benefit from risk stratification based on the source of infection.
Collapse
Affiliation(s)
- Mark Pieroni
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Ivan Olier
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Sandra Ortega-Martorell
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Brian W Johnston
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Ingeborg D Welters
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
41
|
Machine Learning and Antibiotic Management. Antibiotics (Basel) 2022; 11:antibiotics11030304. [PMID: 35326768 PMCID: PMC8944459 DOI: 10.3390/antibiotics11030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic gestalt evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from “very low” to “very high”). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.
Collapse
|
42
|
Zhu X, Peng B, Yi Q, Liu J, Yan J. Prediction Model of Immunosuppressive Medication Non-adherence for Renal Transplant Patients Based on Machine Learning Technology. Front Med (Lausanne) 2022; 9:796424. [PMID: 35252242 PMCID: PMC8895304 DOI: 10.3389/fmed.2022.796424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Predicting adherence to immunosuppressive medication (IM) is important to improve and design future prospective, personalized interventions in Chinese renal transplant patients (RTPs). Methods A retrospective, multicenter, cross-sectional study was performed in 1,191 RTPs from October 2020 to February 2021 in China. The BAASIS was used as the standard to determine the adherence of the patients. Variables of the combined theory, including the general data, the HBM, the TPB, the BMQ, the PSSS and the GSES, were used to build the models. The machine learning (ML) models included LR, RF, MLP, SVM, and XG Boost. The SHAP method was used to evaluate the contribution of predictors to predicting the risk of IM non-adherence in RTPs. Results The IM non-adherence rate in the derivation cohort was 38.5%. Ten predictors were screened to build the model based on the database. The SVM model performed better among the five models, with sensitivity of 0.59, specificity of 0.73, and average AUC of 0.75. The SHAP analysis showed that age, marital status, HBM-perceived barriers, use pill box after transplantation, and PSSS-family support were the most important predictors in the prediction model. All of the models had good performance validated by external data. Conclusions The IM non-adherence rate of RTPs was high, and it is important to improve IM adherence. The model developed by ML technology could identify high-risk patients and provide a basis for the development of relevant improvement measures.
Collapse
Affiliation(s)
- Xiao Zhu
- Nursing Department of Third Xiangya Hospital of Central South University, Changsha, China
- Research Center of Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Peng
- Research Center of Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - QiFeng Yi
- Nursing School of Central South University, Changsha, China
- Nursing Department of Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: QiFeng Yi
| | - Jia Liu
- Nursing School of Central South University, Changsha, China
- Nursing Department of Third Xiangya Hospital of Central South University, Changsha, China
- Research Center of Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, China
- Jia Liu
| | - Jin Yan
- Nursing School of Central South University, Changsha, China
- Nursing Department of Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
43
|
Liu X, Xu A, Huang J, Shen H, Liu Y. Effective prediction model for preventing postoperative deep vein thrombosis during bladder cancer treatment. J Int Med Res 2022; 50:3000605211067688. [PMID: 34986677 PMCID: PMC8753248 DOI: 10.1177/03000605211067688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective To begin to understand how to prevent deep vein thrombosis (DVT) after an innovative operation termed intracorporeal laparoscopic reconstruction of detenial sigmoid neobladder, we explored the factors that influence DVT following surgery, with the aim of constructing a model for predicting DVT occurrence. Methods This retrospective study included 151 bladder cancer patients who underwent intracorporeal laparoscopic reconstruction of detenial sigmoid neobladder. Data describing general clinical characteristics and other common parameters were collected and analyzed. Thereafter, we generated model evaluation curves and finally cross-validated their extrapolations. Results Age and body mass index were risk factors for DVT, whereas postoperative use of hemostatic agents and postoperative passive muscle massage were significant protective factors. Model evaluation curves showed that the model had high accuracy and little bias. Cross-validation affirmed the accuracy of our model. Conclusion The prediction model constructed herein was highly accurate and had little bias; thus, it can be used to predict the likelihood of developing DVT after surgery.
Collapse
Affiliation(s)
- Xing Liu
- Department of Urology, 36613Zhujiang Hospital, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, 36613Zhujiang Hospital, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Jingwen Huang
- Department of Urology, 36613Zhujiang Hospital, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Haiyan Shen
- Department of Urology, 36613Zhujiang Hospital, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Yazhen Liu
- Department of Urology, 36613Zhujiang Hospital, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| |
Collapse
|