1
|
Ai J, Zhou J, Li Y, Sun F, Ge S, Zhang H, Wu Y, Wang Y, Zhang Y, Wang H, Cai J, Zhou X, Wang S, Li R, Feng Z, Xu X, Yan X, Zhao Y, Zhang J, Yu H, Zhang W. Viral load dynamics in asymptomatic and symptomatic patients during Omicron BA.2 outbreak in Shanghai, China, 2022: A longitudinal cohort study. Virol Sin 2024; 39:851-859. [PMID: 39396663 DOI: 10.1016/j.virs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
The SARS-CoV-2 virus, particularly the Omicron BA.2 variant, led to a significant surge in Shanghai, 2022. However, the viral load dynamic in Omicron infections with varying clinical severities remain unclear. This prospective cohort included 48,830 hospitalized coronavirus disease 2019 (COVID-19) patients across three hospitals in Shanghai, China, between 23 March and 15 May, 2022. Systematic nucleic acid testing was performed using RT-PCR Cycle threshold (Ct) value as a proxy of viral load. We analyzed the kinetic characteristics of viral shedding by clinical severity and identified associated risk factors. The study comprised 31.06% asymptomatic cases, 67.66% mild-moderate cases, 1.00% severe cases, 0.29% critical and fatal cases. Upon admission, 57% of patients tested positive, with peak viral load observed at 4 days (median Ct value 27.5), followed by a decrease and an average viral shedding time (VST) of 6.1 days (Interquartile range, 4.0-8.8 days). Although viral load exhibited variation by age and clinical severity, peak Ct values occurred at similar times. Unvaccinated status, age exceeding 60, and comorbidities including hypertension, renal issues kidney dialysis and kidney transplantation, neurological disorders, rheumatism, and psychotic conditions were found to correlate with elevated peak viral load and extended VST. Asymptomatic cases demonstrated a 40% likelihood of contagiousness within 6 days of detection, while mild-moderate and severe cases exhibited post-symptom resolution infectious probabilities of 27% and over 50%, respectively. These findings revealed that the initial Ct values serve as a predictive indicator of severe outcomes. Unvaccinated elderly individuals with particular comorbidities are at high-risk for elevated viral load and prolonged VST.
Collapse
Affiliation(s)
- Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Jiaxin Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Feng Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Shijia Ge
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Yanpeng Wu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Yilin Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Xian Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Rong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Zhen Feng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Xiangyanyu Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Xuemei Yan
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Yuchen Zhao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China
| | - Juanjuan Zhang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai 200050, China
| | - Hongjie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai 200050, China.
| |
Collapse
|
2
|
Dolzhikova IV, Tukhvatulin AI, Grousova DM, Zorkov ID, Komyakova ME, Ilyukhina AA, Kovyrshina AV, Shelkov AY, Botikov AG, Samokhvalova EG, Reshetnikov DA, Siniavin AE, Savina DM, Shcheblyakov DV, Izhaeva FM, Dzharullaeva AS, Erokhova AS, Popova O, Ozharovskaya TA, Zrelkin DI, Goldovskaya PP, Semikhin AS, Zubkova OV, Nedorubov AA, Gushchin VA, Naroditsky BS, Logunov DY, Gintsburg AL. Immunogenicity and Protectivity of Sputnik V Vaccine in hACE2-Transgenic Mice against Homologous and Heterologous SARS-CoV-2 Lineages Including Far-Distanced Omicron BA.5. Vaccines (Basel) 2024; 12:1152. [PMID: 39460319 PMCID: PMC11512357 DOI: 10.3390/vaccines12101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus continuously acquires mutations, leading to the emergence of new variants. Notably, the effectiveness of global vaccination efforts has significantly declined with the rise and spread of the B.1.1.529 (Omicron) variant. METHODS The study used virological, immunological and histological research methods, as well as methods of working with laboratory animals. In this study, we evaluated the Gam-COVID-Vac (Sputnik V), an adenoviral vaccine developed by the N.F. Gamaleya National Research Center for Epidemiology and Microbiology, and conducted experiments on hemizygous K18-ACE2-transgenic F1 mice. The variants studied included B.1.1.1, B.1.1.7, B.1.351, B.1.1.28/P.1, B.1.617.2, and B.1.1.529 BA.5. RESULTS Our findings demonstrate that the Sputnik V vaccine elicits a robust humoral and cellular immune response, effectively protecting vaccinated animals from challenges posed by various SARS-CoV-2 variants. However, we observed a notable reduction in vaccine efficacy against the B.1.1.529 (Omicron BA.5) variant. CONCLUSIONS Our results indicate that ongoing monitoring of emerging mutations is crucial to assess vaccine efficacy against new SARS-CoV-2 variants to identify those with pandemic potential. If protective efficacy declines, it will be imperative to develop new vaccines tailored to current variants of the virus.
Collapse
Affiliation(s)
- Inna V. Dolzhikova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Amir I. Tukhvatulin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Daria M. Grousova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Ilya D. Zorkov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Marina E. Komyakova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Anna A. Ilyukhina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Anna V. Kovyrshina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Artem Y. Shelkov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Andrey G. Botikov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Ekaterina G. Samokhvalova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Dmitrii A. Reshetnikov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Andrey E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Daria M. Savina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Dmitrii V. Shcheblyakov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Fatima M. Izhaeva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Alina S. Dzharullaeva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Alina S. Erokhova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Olga Popova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Tatiana A. Ozharovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Denis I. Zrelkin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Polina P. Goldovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Alexander S. Semikhin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Olga V. Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Andrey A. Nedorubov
- Federal State Autonomous Educational Institution of Higher Education “I.M. Sechenov First Moscow State Medical University” (Sechenov University), Ministry of Health, Russian Federation, 119991 Moscow, Russia
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Boris S. Naroditsky
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya”, Ministry of Health, Russian Federation, 123098 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education “I.M. Sechenov First Moscow State Medical University” (Sechenov University), Ministry of Health, Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
3
|
Selvavinayagam ST, Sankar S, Yong YK, Murugesan A, Suvaithenamudhan S, Hemashree K, Rajeshkumar M, Kumaresan A, Pandey RP, Shanmugam S, Arthydevi P, Kumar MS, Gopalan N, Kannan M, Cheedarla N, Tan HY, Zhang Y, Larsson M, Balakrishnan P, Velu V, Byrareddy SN, Shankar EM, Raju S. Emergence of SARS-CoV-2 omicron variant JN.1 in Tamil Nadu, India - Clinical characteristics and novel mutations. Sci Rep 2024; 14:17476. [PMID: 39080396 PMCID: PMC11289243 DOI: 10.1038/s41598-024-68678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
In December 2023, we observed a notable shift in the COVID-19 landscape, when JN.1 omicron emerged as the predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive clinical specimens, followed by sequence analysis. Mutations within the spike protein sequences were analysed and compared with the previously reported lineages and sub-lineages, to identify the potential impact of the unique mutations on protein structure and possible alterations in the functionality. Several unique and dynamic mutations were identified herein. Molecular docking analysis showed changes in the binding affinity, and key interacting residues of wild-type and mutated structures with key host cell receptors of SARS-CoV-2 entry viz., ACE2, CD147, CD209L and AXL. Our data provides key insights on the emergence of newer variants and highlights the necessity for robust and sustained global genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Sathish Sankar
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, 625 512, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Ramendra P Pandey
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248 007, India
| | - Saravanan Shanmugam
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Masilamani Senthil Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Hong Y Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 185, Linköping, Sweden
| | - Pachamuthu Balakrishnan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, 600 078, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India.
| |
Collapse
|
4
|
AlKhuzaie AA, Jabbar EA, Albadry BJ. Electrolytes, Zinc and Vitamin D 3 in COVID-19 Patients with Cardiovascular Complications. Vopr Virusol 2024; 69:266-276. [PMID: 38996375 DOI: 10.36233/0507-4088-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION COVID-19 is strongly linked to cardiovascular disease, with direct myocardial injury and systemic inflammation as common mechanisms. Pre-existing or infection-induced cardiovascular disease worsens the outcomes for COVID-19 patients. MATERIALS AND METHODS To estimate the serum electrolytes (Na+, K+, Ca++, Zn) and vitamin D3, the study depended on ichroma ii device for Vitamin D3 and Chemistry Analyzer for electrolytes in patient samples. RESULTS A study was conducted on 192 individuals diagnosed with COVID-19, including 35 critical cases, 53 severe cases, 54 moderate cases, and 50 individuals in a control group. The age group with the highest prevalence of infection was between 50‒69 years, while the lowest prevalence was observed in those under 30 years. The study found significant decreases in calcium, potassium, sodium, zinc, and vitamin D3 levels among COVID-19 patients compared to the control group. Zinc and vitamin D3 levels showed a significant correlation with sex, with males experiencing a decline in zinc levels and females having lower vitamin D3 levels. The concentration of calcium, sodium, and zinc showed a negative correlation with age, with older patients having the lowest levels. COVID-19 patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease also had a detrimental impact on electrolyte levels, zinc, and vitamin D3, with critical cases showing the lowest levels. The complications such as heart failure were associated with lower levels of potassium, sodium, and zinc. CONCLUSION In conclusion, the study revealed significant associations between COVID-19 and decreased electrolyte levels, zinc, and vitamin D3. Sex and age were found to be correlated with these markers. Patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease was also linked to lower electrolyte levels, zinc, and vitamin D3. Complications such as heart failure were associated with decreased levels of potassium, sodium, and zinc.
Collapse
Affiliation(s)
- A A AlKhuzaie
- College of Science, University of Thi-Qar
- Ministry of Education, Directorate of Education
| | - E A Jabbar
- Ministry of Education, Directorate of Education
| | | |
Collapse
|
5
|
Tan MW, Anelone AJN, Tay AT, Tan RY, Zeng K, Tan KB, Clapham HE. Differences in virus and immune dynamics for SARS-CoV-2 Delta and Omicron infections by age and vaccination histories. BMC Infect Dis 2024; 24:654. [PMID: 38951848 PMCID: PMC11218222 DOI: 10.1186/s12879-024-09572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
Vaccination against COVID-19 was integral to controlling the pandemic that persisted with the continuous emergence of SARS-CoV-2 variants. Using a mathematical model describing SARS-CoV-2 within-host infection dynamics, we estimate differences in virus and immunity due to factors of infecting variant, age, and vaccination history (vaccination brand, number of doses and time since vaccination). We fit our model in a Bayesian framework to upper respiratory tract viral load measurements obtained from cases of Delta and Omicron infections in Singapore, of whom the majority only had one nasopharyngeal swab measurement. With this dataset, we are able to recreate similar trends in URT virus dynamics observed in past within-host modelling studies fitted to longitudinal patient data.We found that Omicron had higher R0,within values than Delta, indicating greater initial cell-to-cell spread of infection within the host. Moreover, heterogeneities in infection dynamics across patient subgroups could be recreated by fitting immunity-related parameters as vaccination history-specific, with or without age modification. Our model results are consistent with the notion of immunosenescence in SARS-CoV-2 infection in elderly individuals, and the issue of waning immunity with increased time since last vaccination. Lastly, vaccination was not found to subdue virus dynamics in Omicron infections as well as it had for Delta infections.This study provides insight into the influence of vaccine-elicited immunity on SARS-CoV-2 within-host dynamics, and the interplay between age and vaccination history. Furthermore, it demonstrates the need to disentangle host factors and changes in pathogen to discern factors influencing virus dynamics. Finally, this work demonstrates a way forward in the study of within-host virus dynamics, by use of viral load datasets including a large number of patients without repeated measurements.
Collapse
Affiliation(s)
- Maxine W Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| | - Anet J N Anelone
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | - Kangwei Zeng
- Ministry of Health, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Kelvin Bryan Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Selvavinayagam ST, Sankar S, Yong YK, Murugesan A, Suvaithenamudhan S, Hemashree K, Rajeshkumar M, Kumaresan A, Pandey RP, Shanmugam S, Arthydevi P, Kumar MS, Gopalan N, Kannan M, Cheedarla N, Tan HY, Zhang Y, Larsson M, Balakrishnan P, Velu V, Byrareddy SN, Shankar EM, Raju S. Emergence of SARS-CoV-2 Omicron Variant JN.1 in Tamil Nadu, India - Clinical Characteristics and Novel Mutations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305882. [PMID: 38699322 PMCID: PMC11065016 DOI: 10.1101/2024.04.16.24305882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In December 2023, we observed a notable shift in the COVID-19 landscape, when the JN.1 emerged as a predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive samples, followed by sequence analysis. Mutations within the spike protein sequences were analyzed and compared with the previous lineages and sublineages of SARS-CoV-2, to identify the potential impact of these unique mutations on protein structure and possible functionality. Several unique and dynamic mutations were identified herein. Our data provides key insights into the emergence of newer variants of SARS-CoV-2 in our region and highlights the need for robust and sustained genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Sathish Sankar
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Yean K. Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
- Kelip kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni-625 512, India
| | | | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Saravanan Shanmugam
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Masilamani S. Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Hong Y. Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Kelip kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 183 Linköping, Sweden
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| |
Collapse
|
7
|
Liana DF, Novianry V, Andriani A, Mahyarudin M, Astuti P. Disappearance of Imported Cases of Omicron Lineage BA.2.40 in West Kalimantan, Indonesia. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:176-185. [PMID: 38584647 PMCID: PMC10997853 DOI: 10.30476/ijms.2023.97513.2935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2024]
Abstract
Background The World Health Organization has declared Omicron as the fifth variant of concern with more than 50 mutations, particularly in the spike protein. Given increased viral infectivity due to mutations, worldwide genomic surveillance and detection of severe acute respiratory syndrome 2 (SARS-CoV-2) is essential. The present study aimed to track Omicron lineage BA.2.40 in West Kalimantan, Indonesia. Methods In May-August 2022, nasopharyngeal swab samples (n=3,642) were collected from international travelers to West Kalimantan (active surveillance), and patients hospitalized due to SARS-CoV-2 infection (baseline surveillance). The samples were tested for Omicron lineages based on ORF1ab, N, and HV69-70del genes, followed by whole-genome sequencing. The sequences were then identified using two genomic databases, aligned against the reference genome (Wuhan/Hu-1/2019), and then compared with BA.2.40 lineage detected across the world. Phylogenetic analysis between the samples and other SARS-CoV-2 isolates was performed using molecular evolutionary genetics analysis software. Results Based on the genomic databases, 10 isolates were identified as BA.2.40. All samples tested positive for the ORF1ab and N genes, but negative for the HV69-70del gene, which is a marker to detect the Omicron variant. Phylogenetic analysis showed the isolates were closely related to an isolate from Malaysia, an area dominated by BA.2.40. Conclusion Omicron lineage BA.2.40 has no HV69-70 deletion in the spike protein, a marker used to screen for the Omicron variant. BA.2.40 showed a high similarity to an isolate from Malaysia and was detected only during certain periods, indicating the effect of internationally imported cases.
Collapse
Affiliation(s)
- Delima Fajar Liana
- Department of Microbiology, School of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Virhan Novianry
- Department of Biochemistry and Biomolecular, School of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Andriani Andriani
- Department of Biochemistry and Biomolecular, School of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Mahyarudin Mahyarudin
- Department of Microbiology, School of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Puji Astuti
- Department of Biochemistry and Biomolecular, School of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| |
Collapse
|
8
|
Selvavinayagam ST, Suvaithenamudhan S, Yong YK, Hemashree K, Rajeshkumar M, Kumaresan A, Arthydevi P, Kannan M, Gopalan N, Vignesh R, Murugesan A, Sivasankaran MP, Sankar S, Cheedarla N, Anshad AR, Govindaraj S, Zhang Y, Tan HY, Larsson M, Saravanan S, Balakrishnan P, Kulanthaivel L, Singh K, Joseph N, Velu V, Byrareddy SN, Shankar EM, Raju S. Genomic surveillance of omicron B.1.1.529 SARS-CoV-2 and its variants between December 2021 and March 2023 in Tamil Nadu, India-A state-wide prospective longitudinal study. J Med Virol 2024; 96:e29456. [PMID: 38329187 DOI: 10.1002/jmv.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Suvaiyarasan Suvaithenamudhan
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
- School of Biomedical Sciences, Sri Balaji Vidyapeeth, (Deemed to be University), Pondicherry, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Ramachandran Vignesh
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | | | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Narayanaiah Cheedarla
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Abdul R Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Y Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shanmugam Saravanan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Langeswaran Kulanthaivel
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kamalendra Singh
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Narcisse Joseph
- Department of Medical Microbiology, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Selvavinayagam ST, Karishma SJ, Hemashree K, Yong YK, Suvaithenamudhan S, Rajeshkumar M, Aswathy B, Kalaivani V, Priyanka J, Kumaresan A, Kannan M, Gopalan N, Chandramathi S, Vignesh R, Murugesan A, Anshad AR, Ganesh B, Joseph N, Babu H, Govindaraj S, Larsson M, Kandasamy SL, Palani S, Singh K, Byrareddy SN, Velu V, Shankar EM, Raju S. Clinical characteristics and novel mutations of omicron subvariant XBB in Tamil Nadu, India - a cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 19:100272. [PMID: 38076717 PMCID: PMC10709680 DOI: 10.1016/j.lansea.2023.100272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 04/14/2024]
Abstract
BACKGROUND Despite the continued vaccination efforts, there had been a surge in breakthrough infections, and the emergence of the B.1.1.529 omicron variant of SARS-CoV-2 in India. There is a paucity of information globally on the role of newer XBB variants in community transmission. Here, we investigated the mutational patterns among hospitalised patients infected with the XBB omicron sub-variant, and checked if there was any association between the rise in the number of COVID-19 cases and the observed novel mutations in Tamil Nadu, India. METHODS Nasopharyngeal and oropharyngeal swabs, collected from symptomatic and asymptomatic COVID-19 patients were subjected to real-time PCR followed by Next Generation Sequencing (NGS) to rule out the ambiguity of mutations in viruses isolated from the patients (n = 98). Using the phylogenetic association, the mutational patterns were used to corroborate clinico-demographic characteristics and disease severity among the patients. FINDINGS Overall, we identified 43 mutations in the S gene across 98 sequences, of which two were novel mutations (A27S and T747I) that have not been reported previously with XBB sub-variants in the available literature. Additionally, the XBB sequences from our cohort had more mutations than omicron B.1.1.529. The phylogenetic analysis comprising six major branches clearly showed convergent evolution of XBB. Our data suggests that age, and underlying conditions (e.g., diabetes, hypertension, and cardiovascular disease) or secondary complications confers increased susceptibility to infection rather than vaccination status or prior exposure. Many vaccinated individuals showed evidence of a breakthrough infection, with XBB.3 being the predominant variant identified in the study population. INTERPRETATION Our study indicates that the XBB variant is highly evasive from available vaccines and may be more transmissible, and potentially could emerge as the 'next' predominant variant, which likely could overwhelm the existing variants of SARS-CoV-2 omicron variants. FUNDING National Health Mission (India), SIDASARC, VINNMER (Sweden), ORIP/NIH (USA).
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Sree J. Karishma
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor 43 900, Malaysia
| | - Suvaiyarasan Suvaithenamudhan
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
- Department of Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu 620 017, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Bijulal Aswathy
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Jayapal Priyanka
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Preclinical Department, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak 30450, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Abdul R. Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Balasubramanian Ganesh
- National Institute of Epidemiology, Indian Council of Medical Research, Ayappakkam, Chennai 600 077, India
| | - Narcisse Joseph
- Department of Medical Microbiology, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Hemalatha Babu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Shree L. Kandasamy
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| | - Kamalendra Singh
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu 600 006, India
| |
Collapse
|
10
|
Shikha S, Jogi MK, Jha R, Kumar RA, Sah T, Singh P, Sagar R, Kumar A, Marwal R, Ponnusamy K, Agarwal SM, Kumar RS, Arif N, Bharadwaj M, Singh S, Kumar P. Genome sequencing of SARS-CoV-2 omicron variants in Delhi reveals alterations in immunogenic regions in spike glycoprotein. Front Immunol 2023; 14:1209513. [PMID: 37849762 PMCID: PMC10577267 DOI: 10.3389/fimmu.2023.1209513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
The SARS-CoV-2 omicron variants keep accumulating a large number of mutations in the spike (S) protein, which contributes to greater transmissibility and a rapid rise to dominance within populations. The identification of mutations and their affinity to the cellular angiotensin-converting enzyme-2 (ACE-2) receptor and immune evasion in the Delhi NCR region was under-acknowledged. The study identifies some mutations (Y505 reversion, G339H, and R346T/N) in genomes from Delhi, India, and their probable implications for altering the immune response and binding affinity for ACE-2. The spike mutations have influenced the neutralizing activity of antibodies against the omicron variant, which shows partial immune escape. However, researchers are currently exploring various mitigation strategies to tackle the potential decline in efficacy or effectiveness against existing and future variants of SARS-CoV-2. These strategies include modifying vaccines to target specific variants, such as the omicron variant, developing multivalent vaccine formulations, and exploring alternative delivery methods. To address this, it is also necessary to understand the impact of these mutations from a different perspective, especially in terms of alterations in antigenic determinants. In this study, we have done whole genome sequencing (WGS) of SARS-CoV-2 in COVID-19 samples from Delhi, NCR, and analyzed the spike's mutation with an emphasis on antigenic alterations. The impact of mutation in terms of epitope formation, loss/gain of efficiency, and interaction of epitopes with antibodies has been studied. Some of the mutations or variant genomes seem to be the progenitors of the upcoming variants in India. Our analyses suggested that weakening interactions with antibodies may lead to immune resistance in the circulating genomes.
Collapse
Affiliation(s)
- Sristy Shikha
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Mukesh Kumar Jogi
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Ruchika Jha
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, India
| | - Rana Amit Kumar
- Department of Biotechnology, Anugrah Narayan College, Patna, Bihar, India
| | - Tathagat Sah
- Department of Chemical Engineering and Biotechnology, Beant College of Engineering and Technology, Gurdaspur, Punjab, India
| | - Pushpendra Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Ritu Sagar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anuj Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Robin Marwal
- Biotechnology Division, National Centre for Disease Control, Delhi, India
| | | | - Subhash Mohan Agarwal
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - R. Suresh Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Nazneen Arif
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Mausumi Bharadwaj
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Shalini Singh
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Pramod Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| |
Collapse
|
11
|
Osterman A, Krenn F, Iglhaut M, Badell I, Lehner A, Späth PM, Stern M, Both H, Bender S, Muenchhoff M, Graf A, Krebs S, Blum H, Grimmer T, Durner J, Czibere L, Dächert C, Grzimek-Koschewa N, Protzer U, Kaderali L, Baldauf HM, Keppler OT. Automated antigen assays display a high heterogeneity for the detection of SARS-CoV-2 variants of concern, including several Omicron sublineages. Med Microbiol Immunol 2023; 212:307-322. [PMID: 37561226 PMCID: PMC10501957 DOI: 10.1007/s00430-023-00774-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with "non-Omicron" VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical "non-Omicron" samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25-30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests' 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of "non-Omicron" samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests' performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsid protein or immunological and clinical parameters change.
Collapse
Affiliation(s)
- Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Franziska Krenn
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Iglhaut
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Irina Badell
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Andreas Lehner
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Patricia M Späth
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Hanna Both
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Sabine Bender
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- COVID‑19 Registry of the LMU Munich (CORKUM), University Hospital, LMU München, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Durner
- Labor Becker MVZ GbR, Munich, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU München, Munich, Germany
| | | | - Christopher Dächert
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Natascha Grzimek-Koschewa
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
- COVID‑19 Registry of the LMU Munich (CORKUM), University Hospital, LMU München, Munich, Germany.
| |
Collapse
|
12
|
Xie G, Wang L, Zhang J. How are countries responding differently to COVID-19: a systematic review of guidelines on isolation measures. Front Public Health 2023; 11:1190519. [PMID: 37719732 PMCID: PMC10502310 DOI: 10.3389/fpubh.2023.1190519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Isolation strategies have been implemented in numerous countries worldwide during the ongoing community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, various countries and organizations have implemented their isolation measures at varying intensities, even during the same period. Therefore, we systematically reviewed the key information contained in currently available guidelines regarding the isolation of the general population, aiming to better identify the heterogeneity of the current isolation strategies. Methods We conducted searches in four evidence-based medicine (EBM) databases and five guideline websites to identify guidelines, guidance, protocols, and policy documents published by authoritative advisory bodies or healthcare organizations, which provided information on the implementation of isolation for general populations with COVID-19. One author extracted data using a standardized data extraction checklist, and a second author double-checked all extractions for completeness and correctness. Discrepancies were resolved through discussion. The information extracted from the included articles was summarized both narratively and using tables. Results We included 15 articles that provided information on isolation measures recommended by nine different countries and organizations. The included articles consistently recommended isolating individuals with a positive COVID-19 test, regardless of the presence of symptoms. However, there were variations in the duration of isolation, and substantial differences also existed in the criteria for ending the isolation of COVID-19 patients. Conclusion Different countries and organizations have substantial differences in their isolation policies. This reminds us that scientifically sound guidelines on isolation that balance the risk of prematurely ending isolation with the burden of prolonged isolation are a crucial topic of discussion when faced with a pandemic.
Collapse
Affiliation(s)
- Guangmei Xie
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Jun Zhang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|