1
|
Padrela BE, Slivka M, Sneve MH, Garrido PF, Dijsselhof MBJ, Hageman T, Geier O, Grydeland H, Mahroo A, Kuijer JPA, Konstandin S, Eickel K, Barkhof F, Günther M, Walhovd KB, Fjell AM, Mutsaerts HJMM, Petr J. Blood-brain barrier water permeability across the adult lifespan: A multi-echo ASL study. Neurobiol Aging 2025; 147:176-186. [PMID: 39798256 DOI: 10.1016/j.neurobiolaging.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
An emerging biomarker of blood-brain barrier (BBB) permeability is the time of exchange (Tex) of water from the blood to tissue, as measured by multi-echo arterial spin labeling (ASL) MRI. This new non-invasive sequence, already tested in mice, has recently been adapted to humans and optimized for clinical scanning time. In this study, we studied the normal variability of Tex over age and sex, which needs to be established as a reference for studying changes in neurological disease. We evaluated Tex, cerebral blood flow (CBF) and arterial transit time (ATT) in 209 healthy adults between 26 and 87 years, over age and sex, using general linear models in gray matter, white matter, and regionally in cerebral lobes. After QC, 194 participants were included in the main analysis, and the results demonstrated that both gray matter (GM) and white matter (WM) BBB permeability was higher with higher age (Tex lower by 0.47 ms per year in GM [p < 0.05], and by 0.49 ms in WM, for females; no significant for males), with the largest Tex difference in the frontal lobes (0.64 ms decrease per year, p = 0.011, population average). CBF was lower with higher age in the GM (-0.71 mL/min/100g per year, p < 0.001, for females; -0.31 mL/min/100g per year, p < 0.05, for males). When correcting Tex models for CBF and ATT, effect of age on Tex disappears in the GM, but not in the WM (β=-0.28, p = 0.08). The CBF findings of this study are in line with previous studies, demonstrating the validity of the new sequence. The BBB water permeability variation over age and sex described in this study provides a reference for future BBB research.
Collapse
Affiliation(s)
- Beatriz E Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
| | - Maksim Slivka
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Pablo F Garrido
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Department of Physics and Computational Radiology, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mathijs B J Dijsselhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Tamara Hageman
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Oliver Geier
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Department of Physics and Computational Radiology, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; mediri GmbH, Heidelberg, Germany; Faculty 1 - Physics / Electrical Engineering, University Bremen, Bremen, Germany
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
2
|
Tee M, Padrela BE, Dupeyron M, Huang J, Low M, Konstandin S, Eickel K, Günther M, Minta K, Schinazi VR, Colombo G, Petr J, Mutsaerts HJ, Hilal S. Associations between potential risk factors and blood-brain barrier water permeability in middle-aged and older adults. J Alzheimers Dis 2025:13872877251314138. [PMID: 39814543 DOI: 10.1177/13872877251314138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Background: Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. Objective: To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. Methods: To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF). The association of potential risk factors, such as age, sex, body mass index (BMI), blood pressure (BP), and medical history, with these BBB parameters were assessed in 144 community-dwelling adults (median age 59 years, 57% females). The relationship between BBB permeability and cognitive performance measured by the Montreal Cognitive Assessment (MoCA) was also assessed. Results: We found that increased BMI was significantly associated with decreased CBF (β = -0.06). Systolic BP and diastolic BP showed significant associations with all ASL parameters; systolic BP was negatively correlated with Tex (β = -0.02) and CBF (β = -0.01) but positively with ATT (β = 0.02). Diastolic BP was negatively associated with Tex (β = -0.03) and CBF (β = -0.03) but positively with ATT (β = 0.03). MoCA scores had a borderline significant association with Tex (OR = 1.51) and a significant association with CBF (OR = 1.84), which became non-significant after adjusting for confounders. Conclusions: These outcomes underscore the potential of using ME-ASL, warranting further research to strengthen these findings.
Collapse
Affiliation(s)
- Mervin Tee
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Beatriz E Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Margaux Dupeyron
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Aix-Marseille University, Marseille, France
| | - Jiannan Huang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Marcus Low
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Klaus Eickel
- Fraunhofer-Insitute for Digital Medicine MEVIS, Bremen, Germany
| | - Matthias Günther
- Fraunhofer-Insitute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Karolina Minta
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Victor R Schinazi
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Giorgio Colombo
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Henk Jmm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
3
|
Tapper S, Tisell A, Hillman J, Wårdell K. Method for detection of cerebral blood flow in neurointensive care using longitudinal arterial spin labeling MRI. PLoS One 2024; 19:e0314056. [PMID: 39561199 PMCID: PMC11575771 DOI: 10.1371/journal.pone.0314056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Cerebral blood flow (CBF) is carefully monitored in the Neurointensive Care Unit (NICU) to prevent secondary brain insults in patients who have suffered subarachnoid hemorrhage. Including absolute MRI measurements of CBF in the NICU monitoring protocol could add valuable information and potentially improve patient outcomes. This is particularly feasible at Linköping University Hospital, which uniquely has an MRI scanner located in the NICU, enabling longitudinal CBF measurements while eliminating medical transportation risks. Arterial spin labeling is a subtraction-based MRI technique that can measure CBF globally in the brain without the use of contrast agents, and thus is suitable for repeated measurements over short time periods. Therefore, this work aims to develop and implement a methodological workflow for the acquisition, analysis, absolute quantification, and visualization of longitudinal arterial spin labeling MRI measurements acquired in the clinical NICU setting. At this initial stage, the workflow was implemented and tested using acquired test-retest data and longitudinal data from two healthy participants. Subsequently, the workflow was tested in clinical practice on an intubated and ventilated patient monitored in the NICU after suffering a subarachnoid hemorrhage. To ensure accurate day-to-day comparisons between the repeated measurements, the selection of processing and analysis methods aimed to obtain CBF maps in absolute units of ml/min/100g. These CBF maps were quantified using both the FMRIB Software Library and an openly available flow territory atlas. The test-retest data showed small variations (4.4 ml/min/100g between sessions), and the longitudinal measurement resulted in low CBF variability over 12 days. Despite the greater complexity of clinical data, the quantification and chosen visualization tools proved helpful in interpreting the results. In conclusion, this workflow including repeated MRI measurements could help detect changes in CBF between different measurement days and complement other conventional monitoring techniques in the NICU.
Collapse
Affiliation(s)
- Sofie Tapper
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Department of Medical Radiation Physics, Linköping University Hospital, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan Hillman
- Department of Neurosurgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Yu C, Li Y, Xiao Y, Li Q, Lu W, Qiu J, Wang F, Li J. Characterization of posterior circulation blood perfusion in patients with different degrees of basilar artery tortuosity. Neurol Sci 2024; 45:5337-5345. [PMID: 38809448 DOI: 10.1007/s10072-024-07591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE The morphology of basilar artery (BA) may affect posterior circulation blood perfusion. We aimed to investigate whether different degrees of BA tortuosity could lead to the alterations of posterior circulation perfusion. METHODS We collected 138 subjects with different BA tortuosity scores, including 32 cases of score 0, 45 cases of score 1, 43 cases of score 2, and 18 cases of score 3. A higher score represented a higher degree of BA tortuosity. Ordered logistic regression analysis was performed to investigate the risk factors for BA tortuosity. We quantitatively measured the cerebral blood flow (CBF) in eight posterior circulation brain regions using arterial spin labeling. SPSS 25.0 was used for statistical analysis. The correlation between the CBF and BA tortuosity was corrected by the Bonferroni method. The significance level was set at 0.006 (0.05/8). RESULTS Hypertension (HR: 2.39; 95%CI: 1.23-4.71; P = 0.01) and vertebral artery dominance (HR: 2.38; 95%CI: 1.10-4.67; P = 0.03) were risk factors for BA tortuosity. CBF in occipital gray matter (R = -0.383, P < 0.001), occipital white matter (R = -0.377, P < 0.001), temporal gray matter (R = -0.292, P = 0.001), temporal white matter (R = -0.297, P < 0.001), and cerebellum (R = -0.328, P < 0.001) were negatively correlated with BA tortuosity degree. No significant correlation was found between the BA tortuosity degree and CBF in hippocampus (R = -0.208, P = 0.014), thalamus (R = -0.001, P = 0.988) and brainstem (R = -0.204, P = 0.016). CONCLUSIONS BA tortuosity could affect posterior circulation blood perfusion. CBF was negatively correlated with BA tortuosity degree. The morphology of BA may serve as a biomarker for posterior circulation and the severity of posterior circulation ischemia.
Collapse
Affiliation(s)
- Chunyan Yu
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Ye Li
- Department of CT, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Yuanyuan Xiao
- Department of Medical Imaging, The Seventh People's Hospital of Jinan, Jinan, China
| | - Qiang Li
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Wang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| | - Jinglei Li
- Department of Radiology, Taian Disabled Soldiers' Hospital of Shandong Province, Tai'an, China.
| |
Collapse
|
5
|
Decker KP, Sanjana F, Rizzi N, Kramer MK, Cerjanic AM, Johnson CL, Martens CR. Comparing single- and multi-post labeling delays for the measurements of resting cerebral and hippocampal blood flow for cerebrovascular testing in midlife adults. Front Physiol 2024; 15:1437973. [PMID: 39416381 PMCID: PMC11480070 DOI: 10.3389/fphys.2024.1437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To assess the reliability and validity of measuring resting cerebral blood flow (CBF) and hippocampal CBF using a single-post-labeling delay (PLD) and a multi-PLD pseudo-continuous arterial spin labeling (pCASL) protocol for cerebrovascular reactivity (CVR) testing. Methods 25 healthy, midlife adults (57 ± 4 years old) were imaged in a Siemens Prisma 3T magnetic resonance imaging (MRI) scanner. Resting CBF and hippocampal CBF were assessed using two pCASL protocols, our modified single-PLD protocol (pCASL-MOD) to accommodate the needs for CVR testing and the multi-PLD Human Connectome Project (HCP) Lifespan protocol to serve as the reference control (pCASL-HCP). During pCASL-MOD, CVR was calculated as the change in CBF from rest to hypercapnia (+9 mmHg increase in end-tidal partial pressure of carbon dioxide [PETCO2]) and then normalized for PETCO2. The reliability and validity in resting gray matter (GM) CBF, white matter (WM) CBF, and hippocampal CBF between pCASL-MOD and pCASL-HCP protocols were examined using correlation analyses, paired t-tests, and Bland Altman plots. Results The pCASL-MOD and pCASL-HCP protocols were significantly correlated for resting GM CBF [r = 0.72; F (1, 23) = 25.24, p < 0.0001], WM CBF [r = 0.57; F (1, 23) = 10.83, p = 0.003], and hippocampal CBF [r = 0.77; F (1, 23) = 32.65, p < 0.0001]. However, pCASL-MOD underestimated resting GM CBF (pCASL-MOD: 53.7 ± 11.1 v. pCASL-HCP: 69.1 ± 13.1 mL/100 g/min; p < 0.0001), WM CBF (pCASL-MOD: 32.4 ± 4.8 v. pCASL-HCP: 35.5 ± 6.9 mL/100 g/min; p = 0.01), and hippocampal CBF (pCASL-MOD: 50.5 ± 9.0 v. pCASL-HCP: 68.1 ± 12.5 mL/100 g/min; p < 0.0001). PETCO2 increased by 8.0 ± 0.7 mmHg to induce CVR (GM CBF: 4.8% ± 2.6%; WM CBF 2.9% ± 2.5%; and hippocampal CBF: 3.4% ± 3.8%). Conclusion Our single-PLD pCASL-MOD protocol reliably measured CBF and hippocampal CBF at rest given the significant correlation with the multi-PLD pCASL-HCP protocol. Despite the lower magnitude relative to pCASL-HCP, we recommend using our pCASL-MOD protocol for CVR testing in which an exact estimate of CBF is not required such as the assessment of relative change in CBF to hypercapnia.
Collapse
Affiliation(s)
- Kevin P. Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Nick Rizzi
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Mary K. Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexander M. Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Christopher R. Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
6
|
Oliveira ÍAF, Schnabel R, van Osch MJP, van der Zwaag W, Hirschler L. Advancing 7T perfusion imaging by pulsed arterial spin labeling: Using a parallel transmit coil for enhanced labeling robustness and temporal SNR. PLoS One 2024; 19:e0309204. [PMID: 39186519 PMCID: PMC11346640 DOI: 10.1371/journal.pone.0309204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Non-invasive perfusion imaging by Arterial spin labeling (ASL) can be advantageous at Ultra-high field (UHF) MRI, since the image SNR and the T1 relaxation time both increase with the static field. However, ASL implementation, especially at 7T, is not trivial. Especially for ASL, UHF MRI comes with many challenges, mainly due to B1+ inhomogeneities. This study aimed to investigate the effects of different transmit coil configurations on perfusion-weighted imaging at 7T using a flow-sensitive alternating inversion recovery (FAIR) technique with time-resolved frequency offset corrected inversion (TR-FOCI) pulses for labeling and background suppression. We conducted a performance comparison between a parallel transmit (pTx) system equipped with 32 receive (Rx) and 8 transmit (Tx) channels and a standard setup with 32Rx and 2Tx channels. Our findings demonstrate that the pTx system, characterized by a more homogeneous B1 transmit field, resulted in a significantly higher contrast-to-noise ratio, temporal signal-to-noise ratio, and lower coefficient of variance (CoV) than the standard 2Tx setup. Additionally, both setups demonstrated comparable capabilities for functional mapping of the hand region in the motor cortex, achieving reliable results within a short acquisition time of approximately 5 minutes.
Collapse
Affiliation(s)
- Ícaro Agenor Ferreira Oliveira
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Robin Schnabel
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Paschoal AM, Woods JG, Pinto J, Bron EE, Petr J, Kennedy McConnell FA, Bell L, Dounavi M, van Praag CG, Mutsaerts HJMM, Taylor AO, Zhao MY, Brumer I, Chan WSM, Toner J, Hu J, Zhang LX, Domingos C, Monteiro SP, Figueiredo P, Harms AGJ, Padrela BE, Tham C, Abdalle A, Croal PL, Anazodo U. Reproducibility of arterial spin labeling cerebral blood flow image processing: A report of the ISMRM open science initiative for perfusion imaging (OSIPI) and the ASL MRI challenge. Magn Reson Med 2024; 92:836-852. [PMID: 38502108 PMCID: PMC11497242 DOI: 10.1002/mrm.30081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.
Collapse
Affiliation(s)
- Andre M. Paschoal
- Institute of Physics, University of Campinas
CampinasBrazil
- LIM44, Institute of Radiology, Department of Radiology and Oncology of Clinical HospitalUniversity of Sao PauloSao PauloBrazil
| | - Joseph G. Woods
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
- Department of Radiology, Center for Functional Magnetic Resonance ImagingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Esther E. Bron
- Department of Radiology & Nuclear MedicineErasmus MC–University Medical Center RotterdamRotterdamthe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Flora A. Kennedy McConnell
- Radiological Sciences, Division of Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham Biomedical Research CentreQueens Medical CentreNottinghamUK
| | - Laura Bell
- Clinical Imaging Group, Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Cassandra Gould van Praag
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC Location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamthe Netherlands
| | | | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Irène Brumer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Wei Siang Marcus Chan
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Jack Toner
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
- Mental Health & Clinical Neurosciences, School of MedicineUniversity of NottinghamNottinghamUK
| | - Jian Hu
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
- Mental Health & Clinical Neurosciences, School of MedicineUniversity of NottinghamNottinghamUK
| | - Logan X. Zhang
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Catarina Domingos
- Institute for Systems and Robotics‐Lisboa and Department of BioengineeringInstituto Superior Técnico–Universidade de LisboaLisbonPortugal
| | - Sara P. Monteiro
- Institute for Systems and Robotics‐Lisboa and Department of BioengineeringInstituto Superior Técnico–Universidade de LisboaLisbonPortugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics‐Lisboa and Department of BioengineeringInstituto Superior Técnico–Universidade de LisboaLisbonPortugal
| | - Alexander G. J. Harms
- Department of Radiology & Nuclear MedicineErasmus MC–University Medical Center RotterdamRotterdamthe Netherlands
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC Location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamthe Netherlands
| | - Channelle Tham
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenthe Netherlands
| | - Ahmed Abdalle
- Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Paula L. Croal
- Radiological Sciences, Division of Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Udunna Anazodo
- Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
8
|
Schramm S, Börner C, Reichert M, Hoffmann G, Kaczmarz S, Griessmair M, Jung K, Berndt MT, Zimmer C, Baum T, Heinen F, Bonfert MV, Sollmann N. Perfusion imaging by arterial spin labeling in migraine: A literature review. J Cereb Blood Flow Metab 2024; 44:1253-1270. [PMID: 38483125 PMCID: PMC11342727 DOI: 10.1177/0271678x241237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 08/15/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
9
|
Jaafar N, Alsop DC. Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool. Magn Reson Med Sci 2024; 23:352-366. [PMID: 38880616 PMCID: PMC11234948 DOI: 10.2463/mrms.rev.2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Arterial spin labeling (ASL), a non-invasive MRI technique, has emerged as a valuable tool for researchers that can measure blood flow and related parameters. This review aims to provide a qualitative overview of the technical principles and recent developments in ASL and to highlight its potential clinical applications. A growing literature demonstrates impressive ASL sensitivity to a range of neuropathologies and treatment responses. Despite its potential, challenges persist in the translation of ASL to widespread clinical use, including the lack of standardization and the limited availability of comprehensive training. As experience with ASL continues to grow, the final stage of translation will require moving beyond single site observational studies to multi-site experience and measurement of the added contribution of ASL to patient care and outcomes.
Collapse
Affiliation(s)
- Narjes Jaafar
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Fan H, Mutsaerts HJ, Anazodo U, Arteaga D, Baas KP, Buchanan C, Camargo A, Keil VC, Lin Z, Lindner T, Hirschler L, Hu J, Padrela BE, Taghvaei M, Thomas DL, Dolui S, Petr J. ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): ASL pipeline inventory. Magn Reson Med 2024; 91:1787-1802. [PMID: 37811778 PMCID: PMC10950546 DOI: 10.1002/mrm.29869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. METHODS Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. RESULTS The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. CONCLUSION Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory.
Collapse
Affiliation(s)
- Hongli Fan
- The Johns Hopkins School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, USA
- MR Research and Development, Siemens Medical Solutions USA, Inc., Dallas, Texas, USA
| | - Henk J.M.M. Mutsaerts
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Udunna Anazodo
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Daniel Arteaga
- Ascension Saint Thomas Hospital, Nashville, Tennessee, USA
| | - Koen P.A. Baas
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Aldo Camargo
- School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland of Baltimore
| | - Vera C. Keil
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Zixuan Lin
- The Johns Hopkins School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Jian Hu
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, United Kingdom
| | - Beatriz E. Padrela
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Mohammad Taghvaei
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Jan Petr
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
11
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 PMCID: PMC10928768 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
12
|
Beirinckx Q, Bladt P, van der Plas MCE, van Osch MJP, Jeurissen B, den Dekker AJ, Sijbers J. Model-based super-resolution reconstruction for pseudo-continuous Arterial Spin Labeling. Neuroimage 2024; 286:120506. [PMID: 38185186 DOI: 10.1016/j.neuroimage.2024.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.
Collapse
Affiliation(s)
- Quinten Beirinckx
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Piet Bladt
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Merlijn C E van der Plas
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ben Jeurissen
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; Lab for Equilibrium Investigations and Aerospace, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Arnold J den Dekker
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Cerina V, Crivellaro C, Morzenti S, Pozzi FE, Bigiogera V, Jonghi-Lavarini L, Moresco RM, Basso G, De Bernardi E. A ROI-based quantitative pipeline for 18F-FDG PET metabolism and pCASL perfusion joint analysis: Validation of the 18F-FDG PET line. Heliyon 2024; 10:e23340. [PMID: 38163125 PMCID: PMC10755331 DOI: 10.1016/j.heliyon.2023.e23340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In Mild Cognitive Impairment (MCI), the study of brain metabolism, provided by 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) can be integrated with brain perfusion through pseudo-Continuous Arterial Spin Labeling Magnetic Resonance sequences (MR pCASL). Cortical hypometabolism identification generally relies on wide control group datasets; pCASL control groups are instead not publicly available yet, due to lack of standardization in the acquisition parameters. This study presents a quantitative pipeline to be applied to PET and pCASL data to coherently analyze metabolism and perfusion inside 16 matching cortical regions of interest (ROIs) derived from the AAL3 atlas. The PET line is tuned on 36 MCI patients and 107 healthy control subjects, to agree in identifying hypometabolic regions with clinical reference methods (visual analysis supported by a vendor tool and Statistical Parametric Mapping, SPM, with two parametrizations here identified as SPM-A and SPM-B). The analysis was conducted for each ROI separately. The proposed PET analysis pipeline obtained accuracy 78 % and Cohen's к 60 % vs visual analysis, accuracy 79 % and Cohen's к 58 % vs SPM-A, accuracy 77 % and Cohen's к 54 % vs SPM-B. Cohen's к resulted not significantly different from SPM-A and SPM-B Cohen's к when assuming visual analysis as reference method (p-value 0.61 and 0.31 respectively). Considering SPM-A as reference method, Cohen's к is not significantly different from SPM-B Cohen's к as well (p-value = 1.00). The complete PET-pCASL pipeline was then preliminarily applied on 5 MCI patients and metabolism-perfusion regional correlations were assessed. The proposed approach can be considered as a promising tool for PET-pCASL joint analyses in MCI, even in the absence of a pCASL control group, to perform metabolism-perfusion regional correlation studies, and to assess and compare perfusion in hypometabolic or normo-metabolic areas.
Collapse
Affiliation(s)
- Valeria Cerina
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Cinzia Crivellaro
- Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Sabrina Morzenti
- Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Federico E. Pozzi
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
| | | | | | - Rosa M. Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Gianpaolo Basso
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | | |
Collapse
|
14
|
Tha KK. One size does not fit all: qualitative vs. quantitative arterial spin labelling MRI assessment. Eur Radiol 2023; 33:8002-8004. [PMID: 37812298 DOI: 10.1007/s00330-023-10280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan.
| |
Collapse
|