1
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
2
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|