1
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Orban M, Guo K, Yang H, Hu X, Hassaan M, Elsamanty M. Soft pneumatic muscles for post-stroke lower limb ankle rehabilitation: leveraging the potential of soft robotics to optimize functional outcomes. Front Bioeng Biotechnol 2023; 11:1251879. [PMID: 37781541 PMCID: PMC10539589 DOI: 10.3389/fbioe.2023.1251879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: A soft pneumatic muscle was developed to replicate intricate ankle motions essential for rehabilitation, with a specific focus on rotational movement along the x-axis, crucial for walking. The design incorporated precise geometrical parameters and air pressure regulation to enable controlled expansion and motion. Methods: The muscle's response was evaluated under pressure conditions ranging from 100-145 kPa. To optimize the muscle design, finite element simulation was employed to analyze its performance in terms of motion range, force generation, and energy efficiency. An experimental platform was created to assess the muscle's deformation, utilizing advanced techniques such as high-resolution imaging and deep-learning position estimation models for accurate measurements. The fabrication process involved silicone-based materials and 3D-printed molds, enabling precise control and customization of muscle expansion and contraction. Results: The experimental results demonstrated that, under a pressure of 145 kPa, the y-axis deformation (y-def) reached 165 mm, while the x-axis and z-axis deformations were significantly smaller at 0.056 mm and 0.0376 mm, respectively, highlighting the predominant elongation in the y-axis resulting from pressure actuation. The soft muscle model featured a single chamber constructed from silicone rubber, and the visually illustrated and detailed geometrical parameters played a critical role in its functionality, allowing systematic manipulation to meet specific application requirements. Discussion: The simulation and experimental results provided compelling evidence of the soft muscle design's adaptability, controllability, and effectiveness, thus establishing a solid foundation for further advancements in ankle rehabilitation and soft robotics. Incorporating this soft muscle into rehabilitation protocols holds significant promise for enhancing ankle mobility and overall ambulatory function, offering new opportunities to tailor rehabilitation interventions and improve motor function restoration.
Collapse
Affiliation(s)
- Mostafa Orban
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Mechanical Department, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
| | - Kai Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hongbo Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xuhui Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mohamed Hassaan
- Mechanical Department, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
| | - Mahmoud Elsamanty
- Mechanical Department, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
- Mechatronics and Robotics Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| |
Collapse
|
3
|
Li M, Chen J, He B, He G, Zhao CG, Yuan H, Xie J, Xu G, Li J. Stimulation enhancement effect of the combination of exoskeleton-assisted hand rehabilitation and fingertip haptic stimulation. Front Neurosci 2023; 17:1149265. [PMID: 37287795 PMCID: PMC10242052 DOI: 10.3389/fnins.2023.1149265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Providing stimulation enhancements to existing hand rehabilitation training methods may help stroke survivors achieve better treatment outcomes. This paper presents a comparison study to explore the stimulation enhancement effects of the combination of exoskeleton-assisted hand rehabilitation and fingertip haptic stimulation by analyzing behavioral data and event-related potentials. Methods The stimulation effects of the touch sensations created by a water bottle and that created by cutaneous fingertip stimulation with pneumatic actuators are also investigated. Fingertip haptic stimulation was combined with exoskeleton-assisted hand rehabilitation while the haptic stimulation was synchronized with the motion of our hand exoskeleton. In the experiments, three experimental modes, including exoskeleton-assisted grasping motion without haptic stimulation (Mode 1), exoskeleton-assisted grasping motion with haptic stimulation (Mode 2), and exoskeleton-assisted grasping motion with a water bottle (Mode 3), were compared. Results The behavioral analysis results showed that the change of experimental modes had no significant effect on the recognition accuracy of stimulation levels (p = 0.658), while regarding the response time, exoskeleton-assisted grasping motion with haptic stimulation was the same as grasping a water bottle (p = 0.441) but significantly different from that without haptic stimulation (p = 0.006). The analysis of event-related potentials showed that the primary motor cortex, premotor cortex, and primary somatosensory areas of the brain were more activated when both the hand motion assistance and fingertip haptic feedback were provided using our proposed method (P300 amplitude 9.46 μV). Compared to only applying exoskeleton-assisted hand motion, the P300 amplitude was significantly improved by providing both exoskeleton-assisted hand motion and fingertip haptic stimulation (p = 0.006), but no significant differences were found between any other two modes (Mode 2 vs. Mode 3: p = 0.227, Mode 1 vs. Mode 3: p = 0.918). Different modes did not significantly affect the P300 latency (p = 0.102). Stimulation intensity had no effect on the P300 amplitude (p = 0.295, 0.414, 0.867) and latency (p = 0.417, 0.197, 0.607). Discussion Thus, we conclude that combining exoskeleton-assisted hand motion and fingertip haptic stimulation provided stronger stimulation on the motor cortex and somatosensory cortex of the brain simultaneously; the stimulation effects of the touch sensations created by a water bottle and that created by cutaneous fingertip stimulation with pneumatic actuators are similar.
Collapse
Affiliation(s)
- Min Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing Chen
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo He
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guoying He
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chen-Guang Zhao
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua Yuan
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jichun Li
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Chen B, Zhou Y, Chen C, Sayeed Z, Hu J, Qi J, Frush T, Goitz H, Hovorka J, Cheng M, Palacio C. Volitional control of upper-limb exoskeleton empowered by EMG sensors and machine learning computing. ARRAY 2023. [DOI: 10.1016/j.array.2023.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
5
|
Du Q, Luo J, Cheng Q, Wang Y, Guo S. Vibrotactile enhancement in hand rehabilitation has a reinforcing effect on sensorimotor brain activities. Front Neurosci 2022; 16:935827. [PMID: 36267238 PMCID: PMC9577243 DOI: 10.3389/fnins.2022.935827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Stroke patients often suffer from hand dysfunction or loss of tactile perception, which in turn interferes with hand rehabilitation. Tactile-enhanced multi-sensory feedback rehabilitation is an approach worth considering, but its effectiveness has not been well studied. By using functional near-infrared spectroscopy (fNIRS) to analyze the causal activity patterns in the sensorimotor cortex, the present study aims to investigate the cortical hemodynamic effects of hand rehabilitation training when tactile stimulation is applied, and to provide a basis for rehabilitation program development. Methods A vibrotactile enhanced pneumatically actuated hand rehabilitation device was tested on the less-preferred hand of 14 healthy right-handed subjects. The training tasks consisted of move hand and observe video (MO), move hand and vibration stimulation (MV), move hand, observe video, and vibration stimulation (MOV), and a contrast resting task. Region of interest (ROI), a laterality index (LI), and causal brain network analysis methods were used to explore the brain’s cortical blood flow response to a multi-sensory feedback rehabilitation task from multiple perspectives. Results (1) A more pronounced contralateral activation in the right-brain region occurred under the MOV stimulation. Rehabilitation tasks containing vibrotactile enhancement (MV and MOV) had significantly more oxyhemoglobin than the MO task at 5 s after the task starts, indicating faster contralateral activation in sensorimotor brain regions. (2) Five significant lateralized channel connections were generated under the MV and MOV tasks (p < 0.05), one significant lateralized channel connection was generated by the MO task, and the Rest were not, showing that MV and MOV caused stronger lateralization activation. (3) We investigated all thresholds of granger causality (GC) resulting in consistent relative numbers of effect connections. MV elicited stronger causal interactions between the left and right cerebral hemispheres, and at the GC threshold of 0.4, there were 13 causal network connection pairs for MV, 7 for MO, and 9 for MOV. Conclusion Vibrotactile cutaneous stimulation as a tactile enhancement can produce a stronger stimulation of the brain’s sensorimotor brain areas, promoting the establishment of neural pathways, and causing a richer effect between the left and right cerebral hemispheres. The combination of kinesthetic, vibrotactile, and visual stimulation can achieve a more prominent training efficiency from the perspective of functional cerebral hemodynamics.
Collapse
Affiliation(s)
- Qiang Du
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Jingjing Luo
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
- Jihua Laboratory, Foshan, China
- *Correspondence: Jingjing Luo,
| | - Qiying Cheng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Youhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Shijie Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
- Department of the State Key Laboratory of Reliability and Intelligence of Electrical Equipment and the Hebei Key Laboratory of Robot Perception and Human-Robot Interaction, Hebei University of Technology, Tianjin, China
- Shijie Guo,
| |
Collapse
|
6
|
Chen B, Chen C, Hu J, Nguyen T, Qi J, Yang B, Chen D, Alshahrani Y, Zhou Y, Tsai A, Frush T, Goitz H. A Real-Time EMG-Based Fixed-Bandwidth Frequency-Domain Embedded System for Robotic Hand. Front Neurorobot 2022; 16:880073. [PMID: 35845759 PMCID: PMC9280080 DOI: 10.3389/fnbot.2022.880073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
The signals from electromyography (EMG) have been used for volitional control of robotic assistive devices with the challenges of performance improvement. Currently, the most common method of EMG signal processing for robot control is RMS (root mean square)-based algorithm, but system performance accuracy can be affected by noise or artifacts. This study hypothesized that the frequency bandwidths of noise and artifacts are beyond the main EMG signal frequency bandwidth, hence the fixed-bandwidth frequency-domain signal processing methods can filter off the noise and artifacts only by processing the main frequency bandwidth of EMG signals for robot control. The purpose of this study was to develop a cost-effective embedded system and short-time Fourier transform (STFT) method for an EMG-controlled robotic hand. Healthy volunteers were recruited in this study to identify the optimal myoelectric signal frequency bandwidth of muscle contractions. The STFT embedded system was developed using the STM32 microcontroller unit (MCU). The performance of the STFT embedded system was compared with RMS embedded system. The results showed that the optimal myoelectric signal frequency band responding to muscle contractions was between 60 and 80 Hz. The STFT embedded system was more stable than the RMS embedded system in detecting muscle contraction. Onsite calibration was required for RMS embedded system. The average accuracy of the STFT embedded system is 91.55%. This study presents a novel approach for developing a cost-effective and less complex embedded myoelectric signal processing system for robot control.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI, United States
- Chaoyang Chen
| | - Jie Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jie Hu
| | - Thomas Nguyen
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI, United States
| | - Jin Qi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Banghua Yang
- Research Center of Brain Computer Engineering, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Dawei Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Yousef Alshahrani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
- Prosthetics and Assistive Devices Department, Taibah University, Medina, Saudi Arabia
| | - Yang Zhou
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Andrew Tsai
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI, United States
| | - Todd Frush
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI, United States
| | - Henry Goitz
- Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, MI, United States
| |
Collapse
|
7
|
De la Cruz-Sánchez BA, Arias-Montiel M, Lugo-González E. EMG-controlled hand exoskeleton for assisted bilateral rehabilitation. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mita M, Suzumori K, Kudo D, Saito K, Chida S, Hatakeyama K, Shimada Y, Miyakoshi N. Utility of a wearable robot for the fingers that uses pneumatic artificial muscles for patients with post-stroke spasticity. JAPANESE JOURNAL OF COMPREHENSIVE REHABILITATION SCIENCE 2022; 13:12-16. [PMID: 37859849 PMCID: PMC10545049 DOI: 10.11336/jjcrs.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 10/21/2023]
Abstract
Mita M, Suzumori K, Kudo D, Saito K, Chida S, Hatakeyama K, Shimada Y, Miyakoshi N. Utility of a wearable robot for the fingers that uses pneumatic artificial muscles for patients with post-stroke spasticity. Jpn J Compr Rehabil Sci 2022; 13: 12-16. Objective We investigated the utility of a wearable robot for the fingers that we developed using pneumatic artificial muscles for rehabilitation of patients with post-stroke spasticity. Methods Three patients with post-stroke finger spasticity underwent rehabilitation for 20 minutes a day, 5 days a week, for 3 weeks. Passive range of motion, Modified Ashworth Scale (MAS), and circumference of each finger were measured before and after training and compared. Results The range of motion and finger circumference increased when using a wearable robot. The MAS improved partially, and no exacerbation was observed. Conclusions The wearable robot we developed is useful for rehabilitation of post-stroke spasticity and may improve venous return.
Collapse
Affiliation(s)
- Motoki Mita
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Department of Orthopedic Surgery, Yuri Kumiai General Hospital, Yurihonjo, Akita, Japan
| | - Koichi Suzumori
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Daisuke Kudo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kimio Saito
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Department of Rehabilitation Unit, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoaki Chida
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Department of Rehabilitation Unit, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazutoshi Hatakeyama
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Department of Rehabilitation Unit, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Akita Prefectural Center on Development and Disability, Akita, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|