1
|
Tiller NB, Stellingwerff T, Witard OC, Hawley JA, Burke LM, Betts JA. The Nontechnical Summary: A New Initiative to Enhance the Translation of Sports Science Research and Reduce the Spread of Misinformation. Int J Sport Nutr Exerc Metab 2024; 34:337-339. [PMID: 39179215 DOI: 10.1123/ijsnem.2024-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Oliver C Witard
- Center for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - John A Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - James A Betts
- Center for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Arnaoutis G, Alepoudea M, Tambalis KD, Sidossis LS. Dietary Intake, Body Composition, and Nutritional Knowledge of Elite Handball Players. Nutrients 2024; 16:2773. [PMID: 39203909 PMCID: PMC11357219 DOI: 10.3390/nu16162773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Nutrition affects both body composition and, consequently, athletic performance. Only a few studies have assessed the nutritional behavior and knowledge of elite players. The present study aimed to assess the dietary intake, body composition, and nutritional knowledge of elite handball players. Thirty-nine handball players (age: 23.2 ± 2.7 years, weight: 88.2 ± 10.1 kg, height: 1.87 ± 0.07 m, and years of training: 13 ± 2) participated in the study. The athletes completed a set of anthropometric measurements, a 24 h food recall, and a translated edition of Abridged Nutrition for Sport Knowledge Questionnaire (A-NSKQ). The average body fat percentage was 16.7 ± 3.8%, while the average fat free mass was 73.9 ± 8.5 kg. The athletes' average daily energy intake was 2606.6 ± 756 kcal, while the average daily intake for carbohydrates, proteins, and fats was 243.85 ± 107.79 g [2.8 ± 1.3 g/kg BW/d-37.2 ± 10.5% of Total Energy Intake (TEI)], 131.59 ± 53.28 g (1.51 ± 0.7 g/kg BW/d-20.3 ± 6.9% of TEI), and 117.65 ± 40.52 g (40.9 ± 9.9% of TEI), respectively. For iron, calcium, and vitamin D, the average daily intakes were 19.33 ± 10.22 mg, 1287.7 ± 676.42 mg, and 3.22 ± 3.57 mcg respectively. The average success rate on the A-NSKQ was only 38.5 ± 10.7% out of 100. Elite handball players exhibit inadequate dietary intake and sports nutrition knowledge. Nutritional education should be a primary concern towards the amelioration of their athletic performance.
Collapse
Affiliation(s)
- Giannis Arnaoutis
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, El. Venizelou Ave. 70, 17671 Athens, Greece
| | - Maria Alepoudea
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, El. Venizelou Ave. 70, 17671 Athens, Greece
| | - Konstantinos D. Tambalis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece;
| | - Labros S. Sidossis
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|
3
|
Madigan SM. Sex and gender in sports nutrition research: bridging the gap. Proc Nutr Soc 2024:1-7. [PMID: 38948944 DOI: 10.1017/s002966512400466x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Olympic Games have grown to be the largest, gender-equal sporting event in the world, and the International Olympic Committee is committed to gender equality in sports encouraging and supporting the promotion of women in sports at all levels and in all structures with a view to implementing the principle of equality of men and women (IOC, 2023). Women competed for the first time at the 1900 Olympic Games in Paris, and the number of women competing has grown exponentially over the last 100 years, so an estimated 5494 female athletes (48 %) competed in the Summer Olympic Games 2021 in Tokyo. Supporting women (alongside men) in achieving optimum performance is crucial, and understanding that there are sex and gender gaps in sports nutrition research is important. One reason for this gap is the historical bias in sports and exercise science research towards male participants. This has led to a poor understanding of the unique physiological and nutritional needs of female athletes. In summary, a balanced approach is crucial to address the nutritional needs of both male and female athletes. Researchers should continue exploring this important area to optimise performance and health for all athletes. The aim of this review is to summarise current sports nutrition literature and highlight research that seeks to understand and address where the gaps are with respect to several key areas in sports nutrition recommendations that can impact advice and practice with both males and females.
Collapse
Affiliation(s)
- Sharon M Madigan
- Sport Ireland Institute, Dublin, D15 D462, Ireland
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
4
|
Kali VR, Meda SS. Functional nutrition for the health of exercising individuals and elite sportspersons. Nutr Health 2024; 30:49-59. [PMID: 37583297 DOI: 10.1177/02601060231191865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Elite sportspersons who are involved in high-intensity physical sports indulge in severe training and competition schedules, which exposes them to high levels of inflammatory and oxidative stress, hence it may hamper their health sometimes. Disturbance in the health of sportspersons also induces compromised performances. THE PREMISE FOR FUNCTIONAL NUTRITION Functional nutrition is essential for elite sportspersons training for securing both rest and recovery to have proper health and anticipated performance. Apart from serving the energy needs of the sportspersons, the nutrition strategies should provide them with certain metabolic advantages, which provide greater health and immunity, to ensure proper training and competition. The diet of the sportspersons needs to contain appropriate anti-inflammatory and antioxidative nutrients, to ensure to reduction and control of the physiological stress of tissues during high-intensity physical sports, especially during marathon running. Preserving anabolic valence among sportspersons for muscle myokine optimization is an essential aspect of sports nutrition, which secures health and provides excellent performance potential. Preservation and optimization of gut microbiome among sportspersons enhance immune health and performance, through proper gut integrity and enhanced metabolic cascades. As the genes are to be properly expressed for excellent manifestation in protein synthesis and other metabolic signaling, achieving genetic valance through proper nutrition ensures the health of the sportspersons. CONCLUSION Functional nutrition seems a very necessary and potent factor in the training and competition aspects of elite sportspersons since nutrition not only provides recovery but also ensures proper health for elite sportspersons.
Collapse
|
5
|
Martín-Rodríguez A, Belinchón-deMiguel P, Rubio-Zarapuz A, Tornero-Aguilera JF, Martínez-Guardado I, Villanueva-Tobaldo CV, Clemente-Suárez VJ. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024; 16:571. [PMID: 38398895 PMCID: PMC10892519 DOI: 10.3390/nu16040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary practices of athletes play a crucial role in shaping their body composition, influencing sports performance, training adaptations, and overall health. However, despite the widely acknowledged significance of dietary intake in athletic success, there exists a gap in our understanding of the intricate relationships between nutrition, body composition, and performance. Furthermore, emerging evidence suggests that many athletes fail to adopt optimal nutritional practices, which can impede their potential achievements. In response, this Special Issue seeks to gather research papers that delve into athletes' dietary practices and their potential impacts on body composition and sports performance. Additionally, studies focusing on interventions aimed at optimizing dietary habits are encouraged. This paper outlines the key aspects and points that will be developed in the ensuing articles of this Special Issue.
Collapse
Affiliation(s)
- Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Pedro Belinchón-deMiguel
- Faculty of Biomedical and Health Sciences, Department of Nursing and Nutrition, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Ismael Martínez-Guardado
- Faculty of Health Sciences, Camilo José Cela University, C. Castillo de Alarcón, 49, Villafranca del Castillo, 28692 Madrid, Spain;
| | | | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
6
|
Berger NJA, Best R, Best AW, Lane AM, Millet GY, Barwood M, Marcora S, Wilson P, Bearden S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med 2024; 54:73-93. [PMID: 37751076 DOI: 10.1007/s40279-023-01936-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Ultra-endurance running (UER) poses extreme mental and physical challenges that present many barriers to completion, let alone performance. Despite these challenges, participation in UER events continues to increase. With the relative paucity of research into UER training and racing compared with traditional endurance running distance (e.g., marathon), it follows that there are sizable improvements still to be made in UER if the limitations of the sport are sufficiently understood. The purpose of this review is to summarise our current understanding of the major limitations in UER. We begin with an evolutionary perspective that provides the critical background for understanding how our capacities, abilities and limitations have come to be. Although we show that humans display evolutionary adaptations that may bestow an advantage for covering large distances on a daily basis, these often far exceed the levels of our ancestors, which exposes relative limitations. From that framework, we explore the physiological and psychological systems required for running UER events. In each system, the factors that limit performance are highlighted and some guidance for practitioners and future research are shared. Examined systems include thermoregulation, oxygen delivery and utilisation, running economy and biomechanics, fatigue, the digestive system, nutritional and psychological strategies. We show that minimising the cost of running, damage to lower limb tissue and muscle fatigability may become crucial in UER events. Maintaining a sustainable core body temperature is critical to performance, and an even pacing strategy, strategic heat acclimation and individually calculated hydration all contribute to sustained performance. Gastrointestinal issues affect almost every UER participant and can be due to a variety of factors. We present nutritional strategies for different event lengths and types, such as personalised and evidence-based approaches for varying types of carbohydrate, protein and fat intake in fluid or solid form, and how to avoid flavour fatigue. Psychology plays a vital role in UER performance, and we highlight the need to be able to cope with complex situations, and that specific long and short-term goal setting improves performance. Fatigue in UER is multi-factorial, both physical and mental, and the perceived effort or level of fatigue have a major impact on the ability to continue at a given pace. Understanding the complex interplay of these limitations will help prepare UER competitors for the different scenarios they are likely to face. Therefore, this review takes an interdisciplinary approach to synthesising and illuminating limitations in UER performance to assist practitioners and scientists in making informed decisions in practice and applicable research.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
| | - Russ Best
- Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand
| | - Andrew W Best
- Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA, USA
| | - Andrew M Lane
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University Horsforth, Leeds, UK
| | - Samuele Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrick Wilson
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shawn Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
7
|
Guppy F, Muniz-Pardos B, Angeloudis K, Grivas GV, Pitsiladis A, Bundy R, Zelenkova I, Tanisawa K, Akiyama H, Keramitsoglou I, Miller M, Knopp M, Schweizer F, Luckfiel T, Ruiz D, Racinais S, Pitsiladis Y. Technology Innovation and Guardrails in Elite Sport: The Future is Now. Sports Med 2023; 53:97-113. [PMID: 37787844 PMCID: PMC10721698 DOI: 10.1007/s40279-023-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
A growing number of companies are developing or using wearable sensor technologies that can monitor, analyse and transmit data from humans in real time that can be used by the sporting, biomedical and media industries. To explore this phenomenon, we describe and review two high-profile sporting events where innovations in wearable technologies were trialled: the Tokyo 2020 Summer Olympic Games (Tokyo 2020, Japan) and the 2022 adidas Road to Records (Germany). These two major sporting events were the first time academic and industry partners came together to implement real-time wearable solutions during major competition, to protect the health of athletes competing in hot and humid environments, as well as to better understand how these metrics can be used moving forwards. Despite the undoubted benefits of such wearables, there are well-founded concerns regarding their use including: (1) limited evidence quantifying the potential beneficial effects of analysing specific parameters, (2) the quality of hardware and provided data, (3) information overload, (4) data security and (5) exaggerated marketing claims. Employment and sporting rules and regulations also need to evolve to facilitate the use of wearable devices. There is also the potential to obtain real-time data that will oblige medical personnel to make crucial decisions around whether their athletes should continue competing or withdraw for health reasons. To protect athletes, the urgent need is to overcome these ethical/data protection concerns and develop wearable technologies that are backed by quality science. The fields of sport and exercise science and medicine provide an excellent platform to understand the impact of wearable sensors on performance, wellness, health, and disease.
Collapse
Affiliation(s)
- Fergus Guppy
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Saragossa, Spain
| | - Konstantinos Angeloudis
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Gerasimos V Grivas
- Physical Education and Sports, Division of Humanities and Political Sciences, Hellenic Naval Academy, Piraeus, Athens, Greece
| | | | | | - Irina Zelenkova
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Saragossa, Spain
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hiroshi Akiyama
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Mike Miller
- Human Telemetrics, London, UK
- World Olympians Association, Lausanne, Switzerland
| | - Melanie Knopp
- adidas Innovation, adidas AG, Herzogenaurach, Germany
| | | | | | - Daniel Ruiz
- adidas Innovation, adidas AG, Herzogenaurach, Germany
| | - Sebastien Racinais
- Environmental Stress Unit, CREPS Montpellier - Font Romeu, Montpellier, France
| | - Yannis Pitsiladis
- Human Telemetrics, London, UK.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong SAR, Hong Kong.
| |
Collapse
|
8
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
9
|
Bauhaus H, Erdogan P, Braun H, Thevis M. Continuous Glucose Monitoring (CGM) in Sports-A Comparison between a CGM Device and Lab-Based Glucose Analyser under Resting and Exercising Conditions in Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6440. [PMID: 37568982 PMCID: PMC10418731 DOI: 10.3390/ijerph20156440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The objective of this pilot study was to compare glucose concentrations in capillary blood (CB) samples analysed in a laboratory by a validated method and glucose concentrations measured in the interstitial fluid (ISF) by continuous glucose monitoring (CGM) under different physical activity levels in a postprandial state in healthy athletes without diabetes. As a physiological shift occurs between glucose concentration from the CB into the ISF, the applicability of CGM in sports, especially during exercise, as well as the comparability of CB and ISF data necessitate an in-depth assessment. Ten subjects (26 ± 4 years, 67 ± 11 kg bodyweight (BW), 11 ± 3 h) were included in the study. Within 14 days, they underwent six tests consisting of (a) two tests resting fasted (HC_Rest/Fast and LC_Rest/Fast), (b) two tests resting with intake of 1 g glucose/kg BW (HC_Rest/Glc and LC_Rest/Glc), (c) running for 60 min at moderate (ModExerc/Glc), and (d) high intensity after intake of 1 g glucose/kg BW (IntExerc/Glc). Data were collected in the morning, following a standardised dinner before test day. Sensor-based glucose concentrations were compared to those determined from capillary blood samples collected at the time of sensor-based analyses and subjected to laboratory glucose measurements. Pearson's r correlation coefficient was highest for Rest/Glc (0.92, p < 0.001) compared to Rest/Fast (0.45, p < 0.001), ModExerc/Glc (0.60, p < 0.001) and IntExerc/Glc (0.70, p < 0.001). Mean absolute relative deviation (MARD) and standard deviation (SD) was smallest for resting fasted and similar between all other conditions (Rest/Fast: 8 ± 6%, Rest/Glc: 17 ± 12%, ModExerc/Glc: 22 ± 24%, IntExerc/Glc: 18 ± 17%). However, Bland-Altman plot analysis showed a higher range between lower and upper limits of agreement (95% confidence interval) of paired data under exercising compared to resting conditions. Under resting fasted conditions, both methods produce similar outcomes. Under resting postprandial and exercising conditions, respectively, there are differences between both methods. Based on the results of this study, the application of CGM in healthy athletes is not recommended without concomitant nutritional or medical advice.
Collapse
Affiliation(s)
- Helen Bauhaus
- Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany
- German Research Centre of Elite Sports, German Sport University Cologne, 50933 Cologne, Germany;
| | - Pinar Erdogan
- Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany
- German Research Centre of Elite Sports, German Sport University Cologne, 50933 Cologne, Germany;
| | - Hans Braun
- German Research Centre of Elite Sports, German Sport University Cologne, 50933 Cologne, Germany;
- Manfred Donike Institute for Doping Analysis, 50933 Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany
- German Research Centre of Elite Sports, German Sport University Cologne, 50933 Cologne, Germany;
- Manfred Donike Institute for Doping Analysis, 50933 Cologne, Germany
- Centre for Preventive Doping Research, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
10
|
Ritson AJ, Hearris MA, Bannock LG. Bridging the gap: Evidence-based practice guidelines for sports nutritionists. Front Nutr 2023; 10:1118547. [PMID: 37063331 PMCID: PMC10090397 DOI: 10.3389/fnut.2023.1118547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Evidence-based practice is a systematic approach to decision-making developed in the 1990s to help healthcare professionals identify and use the best available evidence to guide clinical practice and patient outcomes amid a plethora of information in often challenging, time-constrained circumstances. Today’s sports nutrition practitioners face similar challenges, as they must assess and judge the quality of evidence and its appropriateness to their athlete, in the often chaotic, time-pressed environment of professional sport. To this end, we present an adapted version of the evidence-based framework to support practitioners in navigating their way through the deluge of available information and guide their recommendations to athletes whilst also reflecting on their practice experience and skills as evidence-based practitioners, thus, helping to bridge the gap between science and practice in sport and exercise nutrition.
Collapse
Affiliation(s)
- Alex J. Ritson
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
| | - Mark A. Hearris
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Laurent G. Bannock
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
- *Correspondence: Laurent G. Bannock,
| |
Collapse
|
11
|
Bernaciková M, Kumstát M, Burešová I, Kapounková K, Struhár I, Sebera M, Paludo AC. Preventing chronic fatigue in Czech young athletes: The features description of the “SmartTraining” mobile application. Front Physiol 2022; 13:919982. [PMID: 36203938 PMCID: PMC9531124 DOI: 10.3389/fphys.2022.919982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study describes a beta version of a mobile application (app) that focuses on preventing chronic fatigue in Czech youth athletes. The first version of the SmartTraining app was developed for athletes as a way to prevent chronic fatigue via alertness and education. For alertness, a multistage process was developed using a combination of parameters about training responses, such as tiredness, well-being, heart rate, energy balance and psychological, and health-related aspects. According to the combination of the multistage parameter outcomes, the algorithm classifies the risk of fatigue based on semaphore light: green corresponds to low, yellow to moderate and red to high risk. The education presented in the app consisted of written and “animated videos” material about the variables involved in training, such as training demands and athletes’ responses, regeneration, nutrition and communication between athletes, coaches, and parents. Subsequently, a beta version of the app was created and freely available to download for Android or iOS mobile. The app can be used in daily routines to reduce the risk of chronic fatigue from inadequate training dose response. Prevention can minimise the risk of injury or physical and emotional burnout in youth. Informing athletes on how to carefully handle the training factors can improve athletes’ awareness of their performance and health status. Collaboration between sports scientists and the commercial sector allows for the efficient development of an easy-to-use and low-cost tool for use in sports settings. Future steps should be performed to validate the app’s accuracy in its alertness and in the efficiency of the educational process.
Collapse
Affiliation(s)
- Martina Bernaciková
- Department of Kinesiology, Faculty of Sports Studies, Masaryk University, Brno, Czechia
- *Correspondence: Martina Bernaciková, ; Ana Carolina Paludo,
| | - Michal Kumstát
- Department of Health Promotion, Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Iva Burešová
- Department of Kinesiology, Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Kateřina Kapounková
- Department of Health Promotion, Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Ivan Struhár
- Department of Health Promotion, Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Martin Sebera
- Department of Kinesiology, Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Ana Carolina Paludo
- Incubator of Kinanthropology Research, Faculty of Sports Studies, Masaryk University, Brno, Czechia
- *Correspondence: Martina Bernaciková, ; Ana Carolina Paludo,
| |
Collapse
|
12
|
Dunne DM, Lefevre-Lewis C, Cunniffe B, Impey SG, Tod D, Close GL, Morton JP, Murphy R. Athlete experiences of communication strategies in applied sports nutrition and future considerations for mobile app supportive solutions. Front Sports Act Living 2022; 4:911412. [PMID: 36172339 PMCID: PMC9512279 DOI: 10.3389/fspor.2022.911412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aim This study aimed to explore athletes' experiences and opinions of communication strategies in applied sports nutrition, as well as capture suggestions for future mobile app supportive solutions. Methods A qualitative approach was used for this research. Data was generated from semi-structured focus groups (n = 9) with a purposive sample of 41 (male = 24, female = 17) full time professional athletes (mean age 24 ± 4.59) from five sports (football, rugby union, athletics, cycling, and boxing). Data was analyzed using reflexive thematic analysis. Results The analysis identified four higher order themes and five sub themes. Athletes appear dissatisfied with the levels of personalization in the nutrition support they receive. Limited practitioner contact time was suggested as a contributing factor to this problem. Athletes acknowledged the usefulness of online remote nutrition support and reported a desire for more personalized technology that can tailor support to their individual needs. Conclusion Athletes experienced a hybrid human-computer approach that combines in-person and remote digital methods to communicate with and receive information from practitioners. Mobile technology may now afford sports nutritionists with new opportunities to develop scalable solutions to support practice.
Collapse
Affiliation(s)
- David Mark Dunne
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Brian Cunniffe
- Department of Surgery, University College London, London, United Kingdom
- English Institute of Sport, Manchester, United Kingdom
| | - Samuel George Impey
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - David Tod
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Graeme Leonard Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rebecca Murphy
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
13
|
Crossland BW, Rigby BR, Duplanty AA, King GA, Juma S, Levine NA, Clark CE, Ramirez KP, Varone NL. Acute Supplementation with Cannabidiol Does Not Attenuate Inflammation or Improve Measures of Performance following Strenuous Exercise. Healthcare (Basel) 2022; 10:healthcare10061133. [PMID: 35742183 PMCID: PMC9222918 DOI: 10.3390/healthcare10061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Supplementation with cannabidiol (CBD) may expedite recovery when consumed after exercise. The purpose of this study was to determine if supplementation with CBD reduces inflammation and enhances performance following strenuous eccentric exercise in collegiate athletes. Twenty-four well-trained females (age = 21.2 ± 1.8 years, height = 166.4 ± 8 cm, weight = 64.9 ± 9.1 kg) completed 100 repetitions of unilateral eccentric leg extension to induce muscle damage. In this crossover design, participants were randomized to receive 5 mg/kg of CBD in pill form or a placebo 2 h prior to, immediately following, and 10 h following muscle damage. Blood was collected, and performance and fatigue were measured prior to, and 4 h, 24 h, and 48 h following the muscle damage. Approximately 28 days separated treatment administration to control for the menstrual cycle. No significant differences were observed between the treatments for inflammation, muscle damage, or subjective fatigue. Peak torque at 60°/s (p = 0.001) and peak isometric torque (p = 0.02) were significantly lower 24 h following muscle damage, but no difference in performance was observed between treatments at any timepoint. Cannabidiol supplementation was unable to reduce fatigue, limit inflammation, or restore performance in well-trained female athletes.
Collapse
|