1
|
Leiva AM, Pardo JM, Arinaitwe W, Newby J, Vongphachanh P, Chittarath K, Oeurn S, Thi Hang L, Gil-Ordóñez A, Rodriguez R, Cuellar WJ. Ceratobasidium sp. is associated with cassava witches' broom disease, a re-emerging threat to cassava cultivation in Southeast Asia. Sci Rep 2023; 13:22500. [PMID: 38110543 PMCID: PMC10728180 DOI: 10.1038/s41598-023-49735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Cassava witches' broom disease (CWBD) is a devastating disease of cassava in Southeast Asia (SEA), of unknown etiology. Affected plants show reduced internodal length, proliferation of leaves and weakening of stems. This results in poor germination of infected stem cuttings (i.e., planting material) and significant reductions in fresh root yields and starch content, causing economic losses for farmers and processors. Using a metagenomic approach, we identified a fungus belonging to the Ceratobasidium genus, sharing more than 98.3-99.7% nucleotide identity at the Internal Transcribed Spacer (ITS), with Ceratobasidium theobromae a pathogen causing similar symptoms in cacao. Microscopy analysis confirmed the identity of the fungus and specific designed PCR tests readily showed (1) Ceratobasidium sp. of cassava is strongly associated with CWBD symptoms, (2) the fungus is present in diseased samples collected since the first recorded CWBD outbreaks in SEA and (3) the fungus is transmissible by grafting. No phytoplasma sequences were detected in diseased plants. Current disease management efforts include adjustment of quarantine protocols and guarantee the production and distribution of Ceratobasidium-free planting material. Implications of related Ceratobasidium fungi, infecting cassava, and cacao in SEA and in other potential risk areas are discussed.
Collapse
Affiliation(s)
- Ana M Leiva
- Virology and Crop Protection Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Crops for Nutrition and Health Research Area, The Americas Hub, Km 17 Recta Cali, 763537, Palmira, Colombia
| | - Juan M Pardo
- Virology and Crop Protection Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Crops for Nutrition and Health Research Area, The Americas Hub, Km 17 Recta Cali, 763537, Palmira, Colombia
| | - Warren Arinaitwe
- Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cassava Program Asia Office, P.O. Box 783, Vientiane, Lao PDR
| | - Jonathan Newby
- Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Cassava Program Asia Office, P.O. Box 783, Vientiane, Lao PDR
| | - Pinkham Vongphachanh
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, P.O. Box 811, Vientiane, Lao PDR
| | - Khonesavanh Chittarath
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, P.O. Box 811, Vientiane, Lao PDR
| | - Samoul Oeurn
- Plant Protection Sanitary and Phytosanitary Department, General Directorate of Agriculture (GDA), Phnom Penh, 120406, Cambodia
| | - Le Thi Hang
- Plant Protection Research Institute (PPRI), Duc Thang Bac Tu Liem, Hanoi, 100000, Vietnam
| | - Alejandra Gil-Ordóñez
- Virology and Crop Protection Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Crops for Nutrition and Health Research Area, The Americas Hub, Km 17 Recta Cali, 763537, Palmira, Colombia
| | - Rafael Rodriguez
- Virology and Crop Protection Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Crops for Nutrition and Health Research Area, The Americas Hub, Km 17 Recta Cali, 763537, Palmira, Colombia
| | - Wilmer J Cuellar
- Virology and Crop Protection Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Crops for Nutrition and Health Research Area, The Americas Hub, Km 17 Recta Cali, 763537, Palmira, Colombia.
| |
Collapse
|
2
|
Kreuze JF, Cuellar WJ, Kumar PL, Boddupalli P, Omondi AB. New Technologies Provide Innovative Opportunities to Enhance Understanding of Major Virus Diseases Threatening Global Food Security. PHYTOPATHOLOGY 2023; 113:1622-1629. [PMID: 37311729 DOI: 10.1094/phyto-12-22-0457-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses pose a continuous and serious threat to crop production worldwide, and globalization and climate change are exacerbating the establishment and rapid spread of new viruses. Simultaneously, developments in genome sequencing technology, nucleic acid amplification methods, and epidemiological modeling are providing plant health specialists with unprecedented opportunities to confront these major threats to the food security and livelihoods of millions of resource-constrained smallholders. In this perspective, we have used recent examples of integrated application of these technologies to enhance understanding of the emergence of plant viral diseases of key food security crops in low- and middle-income countries. We highlight how international funding and collaboration have enabled high-throughput sequencing-based surveillance approaches, targeted field and lab-based diagnostic tools, and modeling approaches that can be effectively used to support surveillance and preparedness against existing and emerging plant viral threats. The importance of national and international collaboration and the future role of CGIAR in further supporting these efforts, including building capabilities to make optimal use of these technologies in low- and middle-income countries, are discussed. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jan F Kreuze
- One CGIAR Plant Health Initiative
- International Potato Center, Apartado 1558, Lima 15024, Peru
| | - Wilmer J Cuellar
- One CGIAR Plant Health Initiative
- One CGIAR Accelerated Breeding Initiative
- Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - P Lava Kumar
- One CGIAR Plant Health Initiative
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria
| | - Prasanna Boddupalli
- One CGIAR Plant Health Initiative
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi, Kenya
| | - Aman B Omondi
- One CGIAR Plant Health Initiative
- Alliance of Bioversity International and CIAT, IPGRI Building, 08BP 0932-Cotonou, Republic of Benin
| |
Collapse
|
3
|
Malichan S, Vannatim N, Chaowongdee S, Pongpamorn P, Paemanee A, Siriwan W. Comparative analysis of salicylic acid levels and gene expression in resistant, tolerant, and susceptible cassava varieties following whitefly-mediated SLCMV infection. Sci Rep 2023; 13:13610. [PMID: 37604906 PMCID: PMC10442324 DOI: 10.1038/s41598-023-40874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Sri Lankan cassava mosaic virus (SLCMV), the primary pathogen responsible for cassava mosaic disease in cassava plantations, is transmitted via infected cutting stems and the whitefly vector, Bemisia tabaci. To obtain better insights into the defense mechanism of cassava against SLCMV, whiteflies were used to induce SLCMV infection for activating the salicylic acid (SA) signaling pathway, which triggers the innate immune system. The study aimed to investigate the specific interactions between viruliferous whiteflies and SA accumulation in resistant (C33), tolerant (Kasetsart 50; KU50), and susceptible (Rayong 11) cassava cultivars by infecting with SLCMV. Leaf samples were collected at various time points, from 1 to 7 days after inoculation (dai). The SA levels were quantified by gas chromatography-mass spectrometry and validated by quantitative reverse transcription polymerase chain reaction. The SA levels increased in KU50 and C33 plants at 2 and 3 dai, respectively, but remained undetected in Rayong11 plants. The expression of PR-9e, PR-7f5, SPS1, SYP121, Hsf8, and HSP90 increased in infected C33 plants at 4 dai, whereas that of KU50 plants decreased immediately at 2 dai, and that of Rayong11 plants increased at 1 dai but gradually decreased thereafter. These findings strongly indicate that SA plays a crucial role in regulating antiviral defense mechanisms, especially in SLCMV-resistant plants. Altogether, the findings provide valuable insights into the mechanisms underlying the activation of SA-mediated anti-SLCMV defense pathways, and the resistance, tolerance, and susceptibility of cassava, which can aid future breeding programs aimed at enhancing SLCMV resistance.
Collapse
Affiliation(s)
- Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Somruthai Chaowongdee
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Pornkanok Pongpamorn
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Pardo JM, Chittarath K, Vongphachanh P, Hang LT, Oeurn S, Arinaitwe W, Rodriguez R, Sophearith S, Malik AI, Cuellar WJ. Cassava Witches' Broom Disease in Southeast Asia: A Review of Its Distribution and Associated Symptoms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112217. [PMID: 37299196 DOI: 10.3390/plants12112217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cassava witches' broom disease (CWBD) is one of the main diseases of cassava in Southeast Asia (SEA). Affected cassava plants show reduced internodal length and proliferation of leaves (phyllody) in the middle and top part of the plant, which results in reduced root yields of 50% or more. It is thought to be caused by phytoplasma; however, despite its widespread distribution in SEA still little is known about CWBD pathology. The overarching goal of this study was to review and corroborate published information on CWBD biology and epidemiology considering recent field observations. We report the following: (1) CWBD symptoms are conserved and persistent in SEA and are distinct from what has been reported as witches' broom in Argentina and Brazil. (2) In comparison with cassava mosaic disease, another major disease of cassava in SEA, symptoms of CWBD develop later. (3) Phytoplasma detected in CWBD-affected plants belong to different ribosomal groups and there is no association study available indicating phytoplasma as the causing agent of CWBD. These findings are essential clues for designing surveillance and management strategies and for future studies to better understand the biology, tissue localization and spatial spread of CWBD in SEA and other potential risk areas.
Collapse
Affiliation(s)
- Juan M Pardo
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Khonesavanh Chittarath
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Pinkham Vongphachanh
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Le Thi Hang
- Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi 100000, Vietnam
| | - Samoul Oeurn
- Plant Protection Sanitary and Phytosanitary Department, General Directorate of Agriculture (GDA), Phnom Penh 120406, Cambodia
| | - Warren Arinaitwe
- Cassava Program Asia Office, International Center for Tropical Agriculture (CIAT), Vientiane P.O. Box 783, Laos
| | - Rafael Rodriguez
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Sok Sophearith
- Cassava Program Cambodia Office, International Center for Tropical Agriculture (CIAT), Phnom Penh 120904, Cambodia
| | - Al Imran Malik
- Cassava Program Asia Office, International Center for Tropical Agriculture (CIAT), Vientiane P.O. Box 783, Laos
| | - Wilmer J Cuellar
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| |
Collapse
|
5
|
Westengen OT, Dalle SP, Mulesa TH. Navigating toward resilient and inclusive seed systems. Proc Natl Acad Sci U S A 2023; 120:e2218777120. [PMID: 36972436 PMCID: PMC10083617 DOI: 10.1073/pnas.2218777120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Food systems face new climatic and socioecological challenges and farmers need a diversity of new plant varieties to respond to these. While plant breeding is important, institutional innovations in seed systems are critical to ensure that new traits and varieties make their way into farmers' fields. This Perspective reviews the state of knowledge on seed system development, outlining insights emerging from the literature that can help navigate the way forward. We synthesize evidence on the contributions and limitations of the different actors, activities, and institutions pertaining to all seed systems smallholder farmers use, formal and informal. To do so, we structure our analysis on three functions-variety development and management, seed production, and seed dissemination-and two contextual factors-seed governance and food system drivers-that can be used to describe any seed system. Our review reveals the strengths and weaknesses of the activities of different actors along the entire chain of functions and demonstrates the multifaceted efforts to strengthen seed systems. We document that a new agenda for seed system development is taking root, based on the view that formal and farmers' seed systems are complementary. Because needs differ from crop to crop, farmer to farmer, and between agroecological and food system contexts, a variety of pathways are needed to ensure farmers' seed security. While the complexity of seed systems eludes a simple roadmap, we conclude by planting a "signpost" with principles to guide efforts to develop resilient and inclusive seed systems.
Collapse
Affiliation(s)
- Ola T. Westengen
- Department of International Environment and Development Studies, Faculty of Landscape and Society, Norwegian University of Life Sciences, 1430Ås, Norway
| | - Sarah Paule Dalle
- Department of International Environment and Development Studies, Faculty of Landscape and Society, Norwegian University of Life Sciences, 1430Ås, Norway
| | - Teshome Hunduma Mulesa
- Department of International Environment and Development Studies, Faculty of Landscape and Society, Norwegian University of Life Sciences, 1430Ås, Norway
| |
Collapse
|
6
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Chikoti PC, Tembo M. Expansion and impact of cassava brown streak and cassava mosaic diseases in Africa: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1076364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Africa produces over half of global cassava; however, the continent's average yield is below the potential yields achieved under experimental conditions. Many factors contributing to low yield include lack of quality varieties, poor soils, limited access to capital, competition for labor, as well as pests and diseases. Plant diseases are the major biotic constraints to cassava production and have caused considerable food insecurity in Africa. Although there has been some level of disease management which has contributed to the increase in cassava production, the two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) still claim between 30–40% and upto 70%, respectively of Africa's cassava harvest. Given the importance of the two diseases in Africa, we review the expansion of CBSD and CMD; impacts of the two diseases on food security and how they can be managed. We provide insights in the spread of the two diseases, management efforts, and future directions.
Collapse
|
8
|
Leiva AM, Chittarath K, Lopez-Alvarez D, Vongphachanh P, Gomez MI, Sengsay S, Wang XW, Rodriguez R, Newby J, Cuellar WJ. Mitochondrial Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Associated with Cassava in Lao PDR. INSECTS 2022; 13:861. [PMID: 36292809 PMCID: PMC9604212 DOI: 10.3390/insects13100861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cassava Mosaic Disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV), has rapidly spread in Southeast Asia (SEA) since 2016. Recently it has been documented in Lao PDR. Previous reports have identified whitefly species of B. tabaci as potential vectors of CMD in SEA, but their occurrence and distribution in cassava fields is not well known. We conducted a countrywide survey in Lao PDR for adult whiteflies in cassava fields, and determined the abundance and genetic diversity of the B. tabaci species complex using mitochondrial cytochrome oxidase I (mtCOI) sequencing. In order to expedite the process, PCR amplifications were performed directly on whitefly adults without DNA extraction, and mtCOI sequences obtained using nanopore portable-sequencing technology. Low whitefly abundances and two cryptic species of the B. tabaci complex, Asia II 1 and Asia II 6, were identified. This is the first work on abundance and genetic identification of whiteflies associated with cassava in Lao PDR. This study indicates currently only a secondary role for Asia II in spreading CMD or as a pest. Routine monitoring and transmission studies on Asia II 6 should be carried out to establish its potential role as a vector of SLCMV in this region.
Collapse
Affiliation(s)
- Ana M. Leiva
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Khonesavanh Chittarath
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Diana Lopez-Alvarez
- Department of Biological Sciences, Universidad Nacional de Colombia UNAL-Palmira, Palmira 763533, Colombia
| | - Pinkham Vongphachanh
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Maria Isabel Gomez
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Somkhit Sengsay
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rafael Rodriguez
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Jonathan Newby
- Cassava Program Asia Office, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), Laos Country Office, Vientiane P.O. Box 783, Laos
| | - Wilmer J. Cuellar
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| |
Collapse
|
9
|
Buddenhagen CE, Xing Y, Andrade-Piedra JL, Forbes GA, Kromann P, Navarrete I, Thomas-Sharma S, Choudhury RA, Andersen Onofre KF, Schulte-Geldermann E, Etherton BA, Plex Sulá AI, Garrett KA. Where to Invest Project Efforts for Greater Benefit: A Framework for Management Performance Mapping with Examples for Potato Seed Health. PHYTOPATHOLOGY 2022; 112:1431-1443. [PMID: 34384240 DOI: 10.1094/phyto-05-20-0202-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- C E Buddenhagen
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
- AgResearch, Ltd., Ruakura, Hamilton, New Zealand
| | - Y Xing
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
| | | | | | - P Kromann
- International Potato Center, Lima, Peru
- Field Crops, Wageningen University and Research, Lelystad, The Netherlands
| | - I Navarrete
- International Potato Center, Lima, Peru
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
- Knowledge, Technology and Innovation, Wageningen University and Research, Wageningen, The Netherlands
| | - S Thomas-Sharma
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, U.S.A
| | - R A Choudhury
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
- School of Earth, Environment, Marine Science, University of Texas, Rio Grande Valley, U.S.A
| | - K F Andersen Onofre
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
- Department of Plant Pathology, Kansas State University, Manhattan, U.S.A
| | - E Schulte-Geldermann
- International Potato Center, Nairobi, Kenya
- Department of Agriculture, University of Applied Sciences Bingen, Bingen, Germany
| | - B A Etherton
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
| | - A I Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
| | - K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, U.S.A
- Food Systems Institute, University of Florida, Gainesville, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, U.S.A
| |
Collapse
|
10
|
Ocampo J, Ovalle T, Labarta R, Le DP, de Haan S, Vu NA, Kha LQ, Becerra Lopez-Lavalle LA. DNA fingerprinting reveals varietal composition of Vietnamese cassava germplasm (Manihot esculenta Crantz) from farmers' field and genebank collections. PLANT MOLECULAR BIOLOGY 2022; 109:215-232. [PMID: 33630231 PMCID: PMC9162981 DOI: 10.1007/s11103-021-01124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/29/2021] [Indexed: 05/24/2023]
Abstract
A molecular analysis using informative SNP markers in 1570 clones of cassava from Vietnam reveals varietal composition from farmers' field and genebank collections Cassava is the most important smallholder cash crops in Southeast Asia and is especially used in industrial products. Yet, systematic genetic studies on molecular markers from Vietnamese germplasm have not been considered for breeding and conservation programs. We conducted a molecular analysis of 1570 clones of cassava germplasm from farms across six agro-ecological zones using informative SNP markers. We unraveled the genetic diversity and population structure and provided insights into the value of breeding and conservation programs. Duplicated genotypes comprised 98% of the total sample of the Central Highlands region. Ninety-six SNPs were amplified Central Highlands and South East provinces had the highest allelic richness, covering up to 83% of alleles. The average observed heterozygosity (Ho = 0.43) was slightly higher than expected (He = 0.40) across SNP markers, suggesting an excess of heterozygotes plants. Diversity indexes indicated that cassava populations from North West and Eastern Vietnam are genetically diverse (mean He = 0.40). Genetic parentage tests identified 85 unique genetic groups within the varieties KM94, KM419, BRA1305, KM101, KM140, PER262, KM60, KM57 and two unidentified varieties, which accounted for 82% of the frequency distribution. KM94 is the most dominant variety in Vietnamese farms surveyed (38%), reflecting its superior quality and productivity. Discriminant analysis of principal components (DAPC) revealed four main subgroups, which were partially corroborated by neighbor joining (NJ) analyses. After removing duplicates, 31 unique genotypes were distributed across five of the agro-ecological zones. These were well distributed in the subgroups revealed via DAPC and NJ analyses. The genetic groups identified herein could be used to select unique accessions that should ideally conform with ex situ germplasm collections and identify areas where on-farm conservation programs should be targeted. Newly identified genotypes may also contribute as genetic breeding resources that could be used to adapt cassava to future changes and farmers' needs.
Collapse
Affiliation(s)
- John Ocampo
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- National University of Colombia (UNAL), Palmira, Colombia
| | - Tatiana Ovalle
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ricardo Labarta
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Dung Phuong Le
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Stefan de Haan
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nguyen Anh Vu
- Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Quy Kha
- Institute of Agricultural Sciences for Southern Vietnam (IAS), Ho Chi Minh, Vietnam
| | | |
Collapse
|
11
|
Alonso Chavez V, Milne AE, van den Bosch F, Pita J, McQuaid CF. Modelling cassava production and pest management under biotic and abiotic constraints. PLANT MOLECULAR BIOLOGY 2022; 109:325-349. [PMID: 34313932 PMCID: PMC9163018 DOI: 10.1007/s11103-021-01170-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
We summarise modelling studies of the most economically important cassava diseases and arthropods, highlighting research gaps where modelling can contribute to the better management of these in the areas of surveillance, control, and host-pest dynamics understanding the effects of climate change and future challenges in modelling. For over 30 years, experimental and theoretical studies have sought to better understand the epidemiology of cassava diseases and arthropods that affect production and lead to considerable yield loss, to detect and control them more effectively. In this review, we consider the contribution of modelling studies to that understanding. We summarise studies of the most economically important cassava pests, including cassava mosaic disease, cassava brown streak disease, the cassava mealybug, and the cassava green mite. We focus on conceptual models of system dynamics rather than statistical methods. Through our analysis we identified areas where modelling has contributed and areas where modelling can improve and further contribute. Firstly, we identify research challenges in the modelling developed for the surveillance, detection and control of cassava pests, and propose approaches to overcome these. We then look at the contributions that modelling has accomplished in the understanding of the interaction and dynamics of cassava and its' pests, highlighting success stories and areas where improvement is needed. Thirdly, we look at the possibility that novel modelling applications can achieve to provide insights into the impacts and uncertainties of climate change. Finally, we identify research gaps, challenges, and opportunities where modelling can develop and contribute for the management of cassava pests, highlighting the recent advances in understanding molecular mechanisms of plant defence.
Collapse
Affiliation(s)
- Vasthi Alonso Chavez
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| | - Alice E Milne
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Frank van den Bosch
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Justin Pita
- Laboratory of Plant Physiology, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - C Finn McQuaid
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
12
|
Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, Srean P, Hy NH, Ham LH, Lopez-Lavalle LAB, Ishitani M, Hung N, Tuan LN, Van Hong N, Huy NQ, Hoat TX, Takasu K, Seki M, Ugaki M. Cassava mosaic disease and its management in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:301-311. [PMID: 34240309 PMCID: PMC9162994 DOI: 10.1007/s11103-021-01168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/21/2021] [Indexed: 05/09/2023]
Abstract
Key message Status of the current outbreak of cassava mosaic disease (CMD) in Southeast Asia was reviewed. Healthy cassava seed production and dissemination systems have been established in Vietnam and Cambodia, along with integrated disease and pest management systems, to combat the outbreak. Abstract Cassava (Manihot esculenta Crantz) is one of the most important edible crops in tropical and subtropical regions. Recently, invasive insect pests and diseases have resulted in serious losses to cassava in Southeast Asia. In this review we discuss the current outbreak of cassava mosaic disease (CMD) caused by the Sri Lankan cassava mosaic virus (SLCMV) in Southeast Asia, and summarize similarities between SLCMV and other cassava mosaic begomoviruses. A SATREPS (Science and Technology Research Partnership for Sustainable Development) project “Development and dissemination of sustainable production systems based on invasive pest management of cassava in Vietnam, Cambodia and Thailand”, was launched in 2016, which has been funded by The Japan International Cooperation Agency (JICA) and The Japan Science and Technology Agency (JST), Japan. The objectives of SATREPS were to establish healthy seed production and dissemination systems for cassava in south Vietnam and Cambodia, and to develop management systems for plant diseases and insect pests of cassava. To achieve these goals, model systems of healthy seed production in Vietnam and Cambodia have been developed incorporating CMD-resistant planting materials through international networks with The International Center for Tropical Agriculture (CIAT) and The International Institute of Tropical Agriculture (IITA). Supplementary Information The online version contains supplementary material available at 10.1007/s11103-021-01168-2.
Collapse
Affiliation(s)
- Ayaka Uke
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| | - Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nguyen Hung
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Ngoc Tuan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Van Hong
- Sub-Department of Plantation and Plant Protection of Tay Ninh Province, Hanoi, Vietnam
| | - Ngo Quang Huy
- Plant Protection Research Institute (PPRI), Hanoi, Vietnam
| | | | - Keiji Takasu
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
13
|
Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Mol Ecol Resour 2021; 22:1706-1724. [PMID: 34918473 DOI: 10.1111/1755-0998.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Management of agricultural pests requires an understanding of pest species diversity, their interactions with beneficial insects and spatial-temporal patterns of pest abundance. Invasive and agriculturally important insect pests can build up very high populations, especially in cropping landscapes. Traditionally, sampling effort for species identification involves small sample sizes and is labour intensive. Here, we describe a multi-primer high throughput sequencing (HTS) metabarcoding method and associated analytical workflow for a rapid, intensive, high-volume survey of pest species compositions. We demonstrate our method using the taxonomically challenging Bemisia pest cryptic species complex as examples. The whiteflies Bemisia including the 'tabaci' species are agriculturally important capable of vectoring diverse plant viruses that cause diseases and crop losses. Our multi-primer metabarcoding HTS amplicon approach simultaneously process high volumes of whitefly individuals, with efficiency to detect rare (i.e., 1%) test-species, while our improved whitefly primers for metabarcoding also detected beneficial hymenopteran parasitoid species from whitefly nymphs. Field-testing our redesigned Bemisia metabarcoding primer sets across the Tanzania, Uganda and Malawi cassava cultivation landscapes, we identified the sub-Saharan Africa 1 Bemisia putative species as the dominant pest species, with other cryptic Bemisia species being detected at various abundances. We also provide evidence that Bemisia species compositions can be affected by host crops and sampling techniques that target either nymphs or adults. Our multi-primer HTS metabarcoding method incorporated two over-lapping amplicons of 472bp and 518bp that spanned the entire 657bp 3' barcoding region for Bemisia, and is particularly suitable to molecular diagnostic surveys of this highly cryptic insect pest species complex that also typically exhibited high population densities in heavy crop infestation episodes. Our approach can be adopted to understand species biodiversity across landscapes, with broad implications for improving trans-boundary biosecurity preparedness, thus contributing to molecular ecological knowledge and the development of control strategies for high-density, cryptic, pest-species complexes.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - L N Court
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Macfadyen
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - F Jacomb
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Vyskočilová
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia.,Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | | |
Collapse
|
14
|
Szyniszewska AM, Chikoti PC, Tembo M, Mulenga R, Gilligan CA, van den Bosch F, McQuaid CF. Smallholder Cassava Planting Material Movement and Grower Behavior in Zambia: Implications for the Management of Cassava Virus Diseases. PHYTOPATHOLOGY 2021; 111:1952-1962. [PMID: 33856231 DOI: 10.1094/phyto-06-20-0215-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cassava (Manihot esculenta) is an important food crop across sub-Saharan Africa, where production is severely inhibited by two viral diseases, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), both propagated by a whitefly vector and via human-mediated movement of infected cassava stems. There is limited information on growers' behavior related to movement of planting material, as well as growers' perception and awareness of cassava diseases, despite the importance of these factors for disease control. This study surveyed a total of 96 cassava subsistence growers and their fields across five provinces in Zambia between 2015 and 2017 to address these knowledge gaps. CMD symptoms were observed in 81.6% of the fields, with an average incidence of 52% across the infected fields. No CBSD symptoms were observed. Most growers used planting materials from their own (94%) or nearby (<10 km) fields of family and friends, although several large transactions over longer distances (10 to 350 km) occurred with friends (15 transactions), markets (1), middlemen (5), and nongovernmental organizations (6). Information related to cassava diseases and certified clean (disease-free) seed reached only 48% of growers. The most frequent sources of information related to cassava diseases included nearby friends, family, and neighbors, while extension workers were the most highly preferred source of information. These data provide a benchmark on which to plan management approaches to controlling CMD and CBSD, which should include clean propagation material, increasing growers' awareness of the diseases, and increasing information provided to farmers (specifically disease symptom recognition and disease management options).[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Patrick Chiza Chikoti
- Zambia Agriculture Research Institute, Plant Protection and Quarantine Division, Mt. Makulu Research Station, Chilanga, Zambia
| | - Mathias Tembo
- Zambia Agriculture Research Institute, Plant Protection and Quarantine Division, Mt. Makulu Research Station, Chilanga, Zambia
| | - Rabson Mulenga
- Zambia Agriculture Research Institute, Plant Protection and Quarantine Division, Mt. Makulu Research Station, Chilanga, Zambia
| | | | - Frank van den Bosch
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Christopher Finn McQuaid
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, WC1E 7HT London, United Kingdom
| |
Collapse
|
15
|
Saokham K, Hemniam N, Roekwan S, Hunsawattanakul S, Thawinampan J, Siriwan W. Survey and molecular detection of Sri Lankan cassava mosaic virus in Thailand. PLoS One 2021; 16:e0252846. [PMID: 34634034 PMCID: PMC8504725 DOI: 10.1371/journal.pone.0252846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
Cassava plantations in an area of 458 hectares spanning five provinces along the Thailand–Cambodia border were surveyed from October 2018 to July 2019 to determine the prevalence of cassava mosaic disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV) in the region. CMD prevalence was 40% in the whole area and 80% in Prachinburi, 43% in Sakaeo, 37% in Burium, 25% in Surin, and 19% in Sisaket provinces. Disease incidence of CMD was highest 43.08% in Sakaeo, followed by 26.78% in Prachinburi, 7% in Burium, 2.58% in Surin, and 1.25% in Sisaket provinces. Disease severity of CMD symptoms was mild chlorosis to moderate mosaic (2–3). The greatest disease severity was recorded in Prachinburi and Sakaeo provinces. Asymptomatic plants were identified in Surin (12%), Prachinburi (5%), Sakaeo (0.2%), and Buriram (0.1%) by PCR analysis. Cassava cultivars CMR-89 and Huai Bong 80 were susceptible to CMD. In 95% of cases, the infection was transmitted by whiteflies (Bemisia tabaci), which were abundant in Sakaeo, Buriram, and Prachinburi but were sparse in Surin; their densities were highest in May and June 2019. Nucleotide sequencing of the mitochondrial cytochrome oxidase 1 (mtCO1) gene of whiteflies in Thailand revealed that it was similar to the mtCO1 gene of Asia II 1 whitefly. Furthermore, the AV1 gene of SLCMV—which encodes the capsid protein—showed 90% nucleotide identity with SLCMV. Phylogenetic analysis of completed nucleotide sequences of DNA-A and DNA-B components of the SLCMV genome determined by rolling circle amplification (RCA) indicated that they were similar to the nucleotide sequence of SLCMV isolates from Thailand, Vietnam, and Cambodia. These results provide important insights into the distribution, impact, and spread of CMD and SLCMV in Thailand.
Collapse
Affiliation(s)
- Kingkan Saokham
- Center of Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| | - Nuannapa Hemniam
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sukanya Roekwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | - Jutathip Thawinampan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
16
|
McEwan MA, Almekinders CJM, Andrade-Piedra JJL, Delaquis E, Garrett KA, Kumar L, Mayanja S, Omondi BA, Rajendran S, Thiele G. "Breaking through the 40% adoption ceiling: Mind the seed system gaps." A perspective on seed systems research for development in One CGIAR. OUTLOOK ON AGRICULTURE 2021; 50:5-12. [PMID: 33867584 PMCID: PMC8022077 DOI: 10.1177/0030727021989346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Seed systems research is central to achieving the United Nations Sustainable Development Goals. Improved varieties with promise for ending hunger, improving nutrition, and increasing livelihood security may be released, but how do they reach and benefit different types of farmers? Without widespread adoption the genetic gains achieved with improved crop varieties can never be actualized. Progress has been made toward demand responsive breeding, however the draft CGIAR 2030 Research and Innovation Strategy fails to recognize the complexity of seed systems and thus presents a narrow vision for the future of seed systems research. This points to the lack of evidence-based dialogue between seed systems researchers and breeders. This perspective paper presents findings from an interdisciplinary group of more than 50 CGIAR scientists who used a suite of seed systems tools to identify four knowledge gaps and associated insights from work on the seed systems for vegetatively propagated crops (VPCs), focusing on bananas (especially cooking bananas and plantains), cassava, potato, sweetpotato, and yam. We discuss the implications for thinking about and intervening in seed systems using a combined biophysical and socioeconomic perspective and how this can contribute to increased varietal adoption and benefits to farmers. The tools merit wider use, not only for the seed systems of VPCs, but for the seed of crops facing similar adoption challenges. We argue for deeper collaboration between seed systems researchers, breeders and national seed system stakeholders to address these and other knowledge gaps and generate the evidence and innovations needed to break through the 40% adoption ceiling for modern varieties, and ensure good quality seed once the new varieties have been adopted. Without this, the achievements of breeders may remain stuck in the seed delivery pipeline.
Collapse
Affiliation(s)
- Margaret A McEwan
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- Knowledge Technology and Innovation Chair Group, Social Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Conny JM Almekinders
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- Knowledge Technology and Innovation Chair Group, Social Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Jorge JL Andrade-Piedra
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- International Potato Center, Lima, Peru
| | - Erik Delaquis
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- International Center for Tropical Agriculture (CIAT), Vientiane, Lao P.D.R
| | - Karen A Garrett
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Lava Kumar
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Sarah Mayanja
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- International Potato Center (CIP), Kampala, Uganda
| | - Bonaventure A Omondi
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
- Alliance of Bioversity International and CIAT, Cotonou, Benin
| | - Srinivasulu Rajendran
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
| | - Graham Thiele
- CGIAR Research Program on Roots Tubers and Bananas, Lima, Peru
| |
Collapse
|
17
|
Xing Y, Hernandez Nopsa JF, Andersen KF, Andrade-Piedra JL, Beed FD, Blomme G, Carvajal-Yepes M, Coyne DL, Cuellar WJ, Forbes GA, Kreuze JF, Kroschel J, Kumar PL, Legg JP, Parker M, Schulte-Geldermann E, Sharma K, Garrett KA. Global Cropland Connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests. Bioscience 2020; 70:744-758. [PMID: 32973407 PMCID: PMC7498352 DOI: 10.1093/biosci/biaa067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics. For each crop, potential movement between geographic location pairs was evaluated using a gravity model, with associated uncertainty quantification. The highly linked hub and bridge locations in cropland connectivity risk maps are likely priorities for surveillance and management, and for tracing intraregion movement of pathogens and pests. Important locations are identified beyond those locations that simply have high crop density. Cropland connectivity risk maps provide a new risk component for integration with other factors-such as climatic suitability, genetic resistance, and global trade routes-to inform pest risk assessment and mitigation.
Collapse
Affiliation(s)
- Yanru Xing
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- Yanru Xing and John F. Hernandez Nopsa contributed equally to this work
| | - John F Hernandez Nopsa
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Mosquera-Bogota, Colombia
- Yanru Xing and John F. Hernandez Nopsa contributed equally to this work
| | - Kelsey F Andersen
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jorge L Andrade-Piedra
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Fenton D Beed
- Plant Production and Protection Division, Food and Agriculture Organization, United Nations (FAO), 00153 Roma, Italy
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Guy Blomme
- Bioversity International, c/o ILRI, Addis Ababa, Ethiopia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Mónica Carvajal-Yepes
- International Center for Tropical Agriculture (CIAT), AA6713, Cali, Colombia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Danny L Coyne
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Wilmer J Cuellar
- International Center for Tropical Agriculture (CIAT), AA6713, Cali, Colombia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Gregory A Forbes
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jan F Kreuze
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jürgen Kroschel
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - P Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - James P Legg
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Monica Parker
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Elmar Schulte-Geldermann
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Kalpana Sharma
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Karen A Garrett
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- CGIAR Research Program on Roots, Tubers, and Bananas
| |
Collapse
|
18
|
Siriwan W, Jimenez J, Hemniam N, Saokham K, Lopez-Alvarez D, Leiva AM, Martinez A, Mwanzia L, Becerra Lopez-Lavalle LA, Cuellar WJ. Surveillance and diagnostics of the emergent Sri Lankan cassava mosaic virus (Fam. Geminiviridae) in Southeast Asia. Virus Res 2020; 285:197959. [PMID: 32407870 DOI: 10.1016/j.virusres.2020.197959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Emergent agricultural pathogens cause severe damage worldwide and their invasive potential is significantly increased by global trade, crop intensification and climate change. Standard surveillance and diagnostic protocols need to be evaluated and implemented, particularly with diseases caused by a wide range of pathogens that induce similar symptoms. Such is the case with Cassava Mosaic Disease (CMD) present in Africa and Asia, and associated with mixed virus infections and recombinant and re-assorted virus strains. CMD has been recently reported in Southeast Asia (SEA) and is already widely spread throughout this region. This communication offers an update on protocols and tools used to track the distribution of CMD and to characterize the pathogen associated with it in SEA.
Collapse
Affiliation(s)
| | - Jenyfer Jimenez
- Virology Laboratory, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Kingkan Saokham
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Diana Lopez-Alvarez
- Virology Laboratory, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ana M Leiva
- Virology Laboratory, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Andres Martinez
- Data Management Group, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leroy Mwanzia
- Data Management Group, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Wilmer J Cuellar
- Virology Laboratory, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
| |
Collapse
|
19
|
Garrett KA, Alcalá-Briseño RI, Andersen KF, Brawner J, Choudhury RA, Delaquis E, Fayette J, Poudel R, Purves D, Rothschild J, Small IM, Thomas-Sharma S, Xing Y. Effective Altruism as an Ethical Lens on Research Priorities. PHYTOPATHOLOGY 2020; 110:708-722. [PMID: 31821114 DOI: 10.1094/phyto-05-19-0168-rvw] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective altruism is an ethical framework for identifying the greatest potential benefits from investments. Here, we apply effective altruism concepts to maximize research benefits through identification of priority stakeholders, pathosystems, and research questions and technologies. Priority stakeholders for research benefits may include smallholder farmers who have not yet attained the minimal standards set out by the United Nations Sustainable Development Goals; these farmers would often have the most to gain from better crop disease management, if their management problems are tractable. In wildlands, prioritization has been based on the risk of extirpating keystone species, protecting ecosystem services, and preserving wild resources of importance to vulnerable people. Pathosystems may be prioritized based on yield and quality loss, and also factors such as whether other researchers would be unlikely to replace the research efforts if efforts were withdrawn, such as in the case of orphan crops and orphan pathosystems. Research products that help build sustainable and resilient systems can be particularly beneficial. The "value of information" from research can be evaluated in epidemic networks and landscapes, to identify priority locations for both benefits to individuals and to constrain regional epidemics. As decision-making becomes more consolidated and more networked in digital agricultural systems, the range of ethical considerations expands. Low-likelihood but high-damage scenarios such as generalist doomsday pathogens may be research priorities because of the extreme potential cost. Regional microbiomes constitute a commons, and avoiding the "tragedy of the microbiome commons" may depend on shifting research products from "common pool goods" to "public goods" or other categories. We provide suggestions for how individual researchers and funders may make altruism-driven research more effective.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - R I Alcalá-Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - K F Andersen
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - J Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| | - R A Choudhury
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - E Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Lao People's Democratic Republic
| | - J Fayette
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - R Poudel
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, U.S.A
| | - D Purves
- Philosophy Department, University of Florida, Gainesville, FL, U.S.A
| | - J Rothschild
- Philosophy Department, University of Florida, Gainesville, FL, U.S.A
| | - I M Small
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- North Florida Research & Education Center, University of Florida, Quincy, FL, U.S.A
| | - S Thomas-Sharma
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, U.S.A
| | - Y Xing
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
20
|
Andersen KF, Buddenhagen CE, Rachkara P, Gibson R, Kalule S, Phillips D, Garrett KA. Modeling Epidemics in Seed Systems and Landscapes To Guide Management Strategies: The Case of Sweet Potato in Northern Uganda. PHYTOPATHOLOGY 2019; 109:1519-1532. [PMID: 30785374 PMCID: PMC7779973 DOI: 10.1094/phyto-03-18-0072-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 05/29/2023]
Abstract
Seed systems are critical for deployment of improved varieties but also can serve as major conduits for the spread of seedborne pathogens. As in many other epidemic systems, epidemic risk in seed systems often depends on the structure of networks of trade, social interactions, and landscape connectivity. In a case study, we evaluated the structure of an informal sweet potato seed system in the Gulu region of northern Uganda for its vulnerability to the spread of emerging epidemics and its utility for disseminating improved varieties. Seed transaction data were collected by surveying vine sellers weekly during the 2014 growing season. We combined data from these observed seed transactions with estimated dispersal risk based on village-to-village proximity to create a multilayer network or "supranetwork." Both the inverse power law function and negative exponential function, common models for dispersal kernels, were evaluated in a sensitivity analysis/uncertainty quantification across a range of parameters chosen to represent spread based on proximity in the landscape. In a set of simulation experiments, we modeled the introduction of a novel pathogen and evaluated the influence of spread parameters on the selection of villages for surveillance and management. We found that the starting position in the network was critical for epidemic progress and final epidemic outcomes, largely driven by node out-degree. The efficacy of node centrality measures was evaluated for utility in identifying villages in the network to manage and limit disease spread. Node degree often performed as well as other, more complicated centrality measures for the networks where village-to-village spread was modeled by the inverse power law, whereas betweenness centrality was often more effective for negative exponential dispersal. This analysis framework can be applied to provide recommendations for a wide variety of seed systems.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- K. F. Andersen
- Plant Pathology Department, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611-0680, U.S.A
| | - C. E. Buddenhagen
- Plant Pathology Department, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611-0680, U.S.A
| | - P. Rachkara
- Department of Rural Development and Agribusiness, Gulu University, Gulu, Uganda
| | - R. Gibson
- Natural Resource Institute, University of Greenwich, Greenwich, United
| | - S. Kalule
- Department of Rural Development and Agribusiness, Gulu University, Gulu, Uganda
| | - D. Phillips
- Natural Resource Institute, University of Greenwich, Greenwich, United
| | - K. A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611-0680, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611-0680, U.S.A
| |
Collapse
|
21
|
Pérez D, Mora R, López Carrascal C. Conservación de la diversidad de yuca en los sistemas tradicionales de cultivo de la Amazonía. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n2.75428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La yuca es determinante para la seguridad alimentaria de cientos de millones de personas alrededor del mundo. A pesar de que el principal medio de propagación del cultivo es a través de semilla asexual por estacas (tallos maduros) se ha revelado una relativamente alta diversidad intraespecífica, principalmente en los sistemas de cultivo de manejo tradicional. En esta revisión se documentan algunos estudios realizados sobre la diversidad de la yuca, tanto por marcadores moleculares como morfológicos, centrándose en aquellos realizados en el Amazonas. También se exponen los principales factores que han determinado el aprovechamiento y conservación de esta diversidad, tales como la aparición espontánea de semillas de origen sexual, el sistema de chagras indígenas, la memoria biocultural y la facilidad de intercambio de semilla entre comunidades. Finalmente, se pone de manifiesto que en los sistemas de manejo tradicional la conservación y uso de la diversidad intraespecífica se constituye en un elemento prioritario que se ha perdido en los sistemas de cultivo a gran escala. En los sistemas de manejo tradicional existe un vínculo etnobotánico que pervive e invita a buscar prácticas alternativas que aseguran un mantenimiento de la diversidad, permitiendo una productividad eficiente e incluso se hace un mejor manejo para disminuir los riesgos de incidencia de algunas plagas y enfermedades.
Collapse
|
22
|
Minato N, Sok S, Chen S, Delaquis E, Phirun I, Le VX, Burra DD, Newby JC, Wyckhuys KAG, de Haan S. Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One 2019; 14:e0212780. [PMID: 30794679 PMCID: PMC6386488 DOI: 10.1371/journal.pone.0212780] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
Cassava mosaic disease, one of the ten most economically important crop viral diseases in the world, was first reported in Southeast Asia from a single plantation in Cambodia in 2015. To determine the presence and incidence of Sri Lankan cassava mosaic virus (SLCMV) one year after first detection, a total of 6,480 samples from 419 fields were systematically collected from cassava production areas across Cambodia (3,840 samples; 240 fields) and Vietnam (2,640samples; 179 fields) in the 2016 cropping season. Using PCR-based diagnostics, we identified 49 SLCMV-infected plants from nine fields, representing 2% of the total number of fields sampled. Infected fields were geographically restricted to two provinces of Eastern Cambodia, while no infection was detected from any of the other sampled sites in either country. Symptom expression patterns in infected plants suggested that SLCMV may have been transmitted both through infected planting materials, and by Bemisia tabaci, the known whitefly vector of SLCMV. In addition, 14% of virus infected plants did not express typical symptoms of cassava mosaic disease on their leaves, highlighting that molecular-based validation is needed to confirm the presence of SLCMV in the field. None of the owners of the SLCMV-infected fields indicated acquired planting materials from the plantation in Ratanakiri where SLCMV was first reported. The surveillance baseline data generated for both countries is discussed in light of future options to control and manage cassava mosaic disease.
Collapse
Affiliation(s)
- Nami Minato
- Agrobiodiversity Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), CGIAR Research Program on Roots Tubers and Bananas, Hanoi, Vietnam
| | - Sophearith Sok
- Agrobiodiversity Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), CGIAR Research Program on Roots Tubers and Bananas, Hanoi, Vietnam
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute (TCGRI), Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Erik Delaquis
- Agrobiodiversity Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), CGIAR Research Program on Roots Tubers and Bananas, Hanoi, Vietnam
| | - Iv Phirun
- Department of Industrial Crops, General Directorate of Agriculture (GDA), Phnom Penh, Cambodia
| | - Vi Xuan Le
- Plant Protection Research Institute (PPRI), Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Dharani D. Burra
- Decision and Policy Analysis Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), Hanoi, Vietnam
| | - Jonathan C. Newby
- Agrobiodiversity Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), CGIAR Research Program on Roots Tubers and Bananas, Hanoi, Vietnam
| | - Kris A. G. Wyckhuys
- International Joint Research Laboratory on Ecological Pest Management, Fuzhou, China
| | - Stef de Haan
- Agrobiodiversity Research Area, Asia Regional Office, International Center for Tropical Agriculture (CIAT), CGIAR Research Program on Roots Tubers and Bananas, Hanoi, Vietnam
- * E-mail:
| |
Collapse
|
23
|
Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur 2019. [DOI: 10.1007/s12571-018-0874-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|