1
|
Chea L, Alhussein M, Karlovsky P, Pawelzik E, Naumann M. Adaptation of potato cultivars to phosphorus variability and enhancement of phosphorus efficiency by Bacillus subtilis. BMC PLANT BIOLOGY 2024; 24:1176. [PMID: 39668377 PMCID: PMC11636052 DOI: 10.1186/s12870-024-05868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Plants utilize a variety of mechanisms to adapt to fluctuations in phosphorus (P) availability. Potatoes, in comparison to other crops, often display reduced phosphorus use efficiency (PUE) due to their underdeveloped root systems; therefore, understanding the mechanisms underlying PUE is critical for improving it. This study aimed to evaluate the morphological and physiological responses of potatoes to different P levels, with a focus on root system alterations and PUE. Two potato cultivars, a table potato (cv. Milva) and a starch potato (cv. Lady Claire), were subjected to varying P levels (0.5, 2, 5, and 30 mg P L-1 supplied as KH2PO4) in a hydroponic system. Additionally, the plants grown under 0.5 and 2 mg P L-1 were treated with plant growth-promoting Bacillus subtilis (B. subtilis), compared to untreated controls, to investigate the effectiveness of B. subtilis in addressing P deficiency. B. subtilis inoculation was performed by adding a bacterial suspension weekly to the hydroponic nutrient solution. RESULTS The findings illustrated Milva's ability to efficiently allocate P and sugars to its roots under low P levels, thereby enhancing biomass and facilitating increased P uptake and PUE. Conversely, Lady Claire exhibited lower P assimilation efficiency under low P levels but demonstrated improved efficiency under high P availability. The concentration of P in the nutrient solution affected P uptake and several factors believed to be involved in P utilization, such as root morphology, sugar and indole-3-acetic acid concentration in the roots, and acid phosphatase activity. Gene expression analyses underscored the pivotal roles of StPHT1;1 and StPHT2;1 in P translocation to shoots, particularly in Lady Claire. Inoculation with B. subtilis improved P acquisition efficiency by 10% under low phosphorus levels (P0.5 and P2), particularly in Lady Claire, where shoot and root phosphorus contents increased by 13-25% and 4-13%, respectively. Additionally, B. subtilis displayed higher efficacy in mitigating P deficiency in Lady Claire compared to Milva, particularly under low P levels (P0.5 and P2). CONCLUSION Milva showed greater phosphorus efficiency than Lady Claire under low P conditions, attributed to higher P and sugar levels in roots, enhancing root growth, P uptake, and translocation to shoots, particularly to young leaves. However, Lady Claire demonstrated a notable increase in P uptake and enhanced responsiveness to B. subtilis inoculation, particularly under low P levels (P0.5 and P2). These findings provide valuable insights for optimizing P management strategies to improve PUE in potatoes, especially under low P levels.
Collapse
Affiliation(s)
- Leangsrun Chea
- Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany
- Present address: Center of Excellence on Sustainable Agricultural Intensification and Nutrition, Royal University of Agriculture, Dangkor District, Phnom Penh, Cambodia
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, Department of Crop Sciences, University of Goettingen, Grisebachstraße 6, 37077, Goettingen, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Department of Crop Sciences, University of Goettingen, Grisebachstraße 6, 37077, Goettingen, Germany
| | - Elke Pawelzik
- Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany
| | - Marcel Naumann
- Quality of Plant Products, Department of Crop Sciences, University of Goettingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany.
- Present address: Plant Nutrition and Crop Physiology, University of Goettingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany.
| |
Collapse
|
2
|
Huang Q, Zhou W, Zeng Z, Wang N, Huang Y, Cheng H, Huang Q, Liu J, Liu F, Liao H, Hu C, Chen D, Wei S, Li C, Qin Z. Microbial and organic manure fertilization alters rhizosphere bacteria and carotenoids of Citrus reticulata Blanco 'Orah'. BMC Microbiol 2024; 24:475. [PMID: 39543507 PMCID: PMC11562559 DOI: 10.1186/s12866-024-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Citrus reticulata Blanco 'Orah' is one of the most widely grown citrus varieties in southern China. It has been proven that microbial and organic manure fertilization improve the yields and appearances of 'Orah' fruits. However, details regarding the mechanisms underlying the effects of combined fertilization on the agronomic traits and rhizosphere bacterial community of plants still need to be elucidated. RESULTS This study compared the rhizosphere bacterial community and carotenoids of 'Orah' with (WYT group) and without (WYCK group) combined fertilization in a local orchard in Wuming town from Nanning, Guangxi, China. The WYT group was sprayed with 50 ml Strongreen and 250 g of Yumeiren five times while WYCK group did not sprayed. Combined fertilization increased fruit weight and the Citrus color index (CCI) significantly (p < 0.05). By 16s rRNA sequencing, 7,126 operational taxonomic units (OTU) were obtained. A higher Shannon index was observed in the WYT group compared to that in the WYCK group. Comparison between the two groups showed that Pseudomonas was enriched in the WYT group with LDA (log10) score of 4.32, and Cyanobacteria was enriched in the WYCK group with LDA (log10) score of -4.11. At the family level, Phyllobacteriaceae (abundance mean: 0.0046 in WYCK vs. 0.0073 in WYT) was significantly abundant in the WYT group, whereas Thermosporothrix (abundance mean: 0.00053 in WYCK vs. 0.0019 in WYT) and Sphingobium (abundance mean: 0.00053 in WYCK vs. 0.0013 in WYT) were significantly abundant in the WYCK group. A total of 51 carotenoid components were tested by UPLC-MS/MS. In the pulp tissues, 37 carotenoid components were decreased in the WYT group compared to those in the WYCK group. In fruit skin, 24 significantly different components (7 downregulated and 17 upregulated) were identified in WYT compared to those in WYCK. Correlation analysis revealed that the network between OTUs and carotenoids contained seven carotenoid components and four OTUs. Four OTUs, strain TRA3-20 (a eubacterium), Roseiflexus, OPB35, and Fictibacillus correlated to carotenoid accumulation regulation in fruit skin. CONCLUSIONS This study demonstrates the impact of the fertilization on soil microorganisms and carotenoid components. It constructs the regulatory network contained four OTUs for seven carotenoid components, providing evidence on precise fertilization in Orah.
Collapse
Affiliation(s)
- Qichun Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhou
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhikang Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Nina Wang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanxiao Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hao Cheng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quyan Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jimin Liu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Fuping Liu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huihong Liao
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongkui Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Shaolong Wei
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Chaosheng Li
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Zelin Qin
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
3
|
Romero-Contreras YJ, González-Serrano F, Bello-López E, Formey D, Aragón W, Cevallos MÁ, Rebollar EA, Serrano M. Bacteria from the skin of amphibians promote growth of Arabidopsis thaliana and Solanum lycopersicum by modifying hormone-related transcriptome response. PLANT MOLECULAR BIOLOGY 2024; 114:39. [PMID: 38615069 PMCID: PMC11016013 DOI: 10.1007/s11103-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.
Collapse
Affiliation(s)
- Yordan J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| | | | - Elena Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Wendy Aragón
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Blvd. Príncipe Akishino s/n, 30798, Tapachula, Chiapas, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
4
|
Debnath S, Elgorban AM, Bahkali AH, Eswaramoorthy R, Verma M, Tiwari P, Wang S, Wong LS, Syed A. Exploring the efficacy of 1-amino-cyclopropane-1-carboxylic acid (ACCA) as a natural compound in strengthening maize resistance against biotic and abiotic stressors: an empirical computational study. Front Microbiol 2023; 14:1232086. [PMID: 37637126 PMCID: PMC10457119 DOI: 10.3389/fmicb.2023.1232086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Objective This study aims to understand plant-bacteria interactions that enhance plant resistance to environmental stressors, with a focus on maize (Zea mays L.) and its vulnerability to various pathogenic organisms. We examine the potential of 1-amino-cyclopropane-1-carboxylic acid (ACCA) as a compound to boost maize's resilience against stressors and pathogens. Background With the growing global population and increased food demand, the study of endophytes, comprising bacteria and fungi, becomes crucial. They reside within plant tissues, affecting their hosts either beneficially or detrimentally. Agrobacteria are of specific interest due to their potential to contribute to developing strategies for plant resistance enhancement. Methods We conducted exhaustive research on the defense-related proteins and mechanisms involved in maize-pathogen interactions. The efficacy of ACCA as a natural-compound that could enhance maize's resistance was examined. Results Our research indicates that ACCA, having a binding energy of -9.98 kcal/mol, successfully strengthens maize resistance against pathogenic assaults and drought stress. It plays a crucial protective role in maize plants as they mature, outperforming other ligands in its effectiveness to improve productivity and increase yield. Conclusion Applying ACCA to maize plants has considerable potential in enhancing their resilience and tolerance to stress, proving to be an effective strategy to boost crop yield and productivity. This could help address the increasing global food demand. However, more research is needed to optimize ACCA application methods and to gain a comprehensive understanding of its long-term effects on maize cultivations and the environment.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, India
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sharma N, Dabral S, Tyagi J, Yadav G, Aggarwal H, Joshi NC, Varma A, Koul M, Choudhary DK, Mishra A. Interaction studies of Serendipita indica and Zhihengliuella sp. ISTPL4 and their synergistic role in growth promotion in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1155715. [PMID: 37293679 PMCID: PMC10244739 DOI: 10.3389/fpls.2023.1155715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Rapid urbanization and globalization demand increasing agricultural productivity. Soil nutrient supply capacity is continuously decreasing due to soil erosion, degradation, salt deposition, undesired element, metal deposition, water scarcity, and an uneven nutrient delivery system. Rice cultivation requires a large amount of water which is becoming detrimental due to these activities. There is a need to increase its productivity. Microbial inoculants are becoming increasingly important in achieving sustainable agricultural production systems. The current study was conducted to investigate the interaction between the root endophytic fungus Serendipita indica (S. indica) and the actinobacterium Zhihengliuella sp. ISTPL4 (Z. sp. ISTPL4) and their synergistic effects on the growth of rice (Oryza sativa L). Both S. indica and Z. sp. ISTPL4 showed positive interactions. Growth of S. indica was observed at different days after Z. sp. ISTPL4 inoculation, and stimulated growth of S. indica was observed when Z. sp. ISTPL4 was inoculated at 5 dafi (days after fungal inoculation). Z. sp. ISTPL4 promoted the growth of S. indica as it increased spore germination. Furthermore, confocal and scanning electron microscopy (SEM) analyses showed a 27% increase in the spore size of S. indica in the presence of Z. sp. ISTPL4. In a liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis increased production of alanine and glutamic acid was observed in their sequential co-culture as compared with individual cultures. Sequential inoculation of S. indica and Z. sp. ISTPL4 significantly increased the biochemical and physical characteristics of rice as compared with their individual inoculum. Biochemical parameters such as chlorophyll content, total soluble sugar, and flavonoid content in the rice increased by up to 57%, 47%, and 39%, respectively, in the presence of the combined inoculum of S. indica and Z. sp. ISTPL4. This will be the first study, to the best of our knowledge, which shows the fungus and actinobacterium interaction and their synergistic roles in the growth promotion of rice. Furthermore, this novel combination can also be used to boost the growth of other crops to increase the agricultural yield.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Surbhi Dabral
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Jaagriti Tyagi
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Gaurav Yadav
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Himanshi Aggarwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | | | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | | | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Nagrale DT, Chaurasia A, Kumar S, Gawande SP, Hiremani NS, Shankar R, Gokte-Narkhedkar N, Renu, Prasad YG. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J Microbiol Biotechnol 2023; 39:100. [PMID: 36792799 DOI: 10.1007/s11274-023-03536-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.
Collapse
Affiliation(s)
- D T Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India.
| | - A Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221305, India.
| | - S Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - S P Gawande
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - N S Hiremani
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Raja Shankar
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089, India
| | - N Gokte-Narkhedkar
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Renu
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Y G Prasad
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| |
Collapse
|
7
|
Gopalakrishnan S, Srinivas V, Chand U, Pratyusha S, Samineni S. Streptomyces consortia-mediated plant growth-promotion and yield performance in chickpea. 3 Biotech 2022; 12:318. [PMID: 36276473 PMCID: PMC9548453 DOI: 10.1007/s13205-022-03389-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/01/2022] Open
Abstract
Fourteen Streptomyces strains reported earlier as plant growth promoters (PGP) in chickpea were characterized for production of ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and solubilization of silica and zinc. The results showed that nine (CAI-17, CAI-78, KAI-26, CAI-21, CAI-26, MMA-32, CAI-140, CAI-155 and KAI-180) and six (CAI-17, CAI-21, CAI-26, CAI-13, CAI-93 and KAI-180) strains were found to produce ammonia and ACC deaminase, respectively, while one (KAI-180) and eight (CAI-17, CAI-21, CAI-26, MMA-32, CAI-13, CAI-85, CAI-93 and KAI-180) strains solubilized silica and zinc, respectively. The selected 14 Streptomyces strains were categorized into three consortia groups, consortium-1 (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), consortium-2 (CAI-21, CAI-26 and MMA-32) and consortium-3 (CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180), based on their compatibility, and evaluated for their PGP traits in chickpea. The experiment was conducted under field conditions with two chickpea varieties over two years. The consortia-treated plots enhanced nodule number up to 23%, nodule weight up to 36%, root weight up to 27% and shoot weight up to 26% at 30 days after sowing and pod weight up to 35%, pod number up to 34% and grain yield up to 24% at harvest over the un-inoculated control plots. The harvested grains of consortia treatments were found to enhance crude protein up to 14%, crude fibre up to 17% and crude fat up to 16% over the grains from un-inoculated control. The rhizosphere soils of the consortia-treated plots enhanced total nitrogen up to 21%, organic carbon up to 8% and available phosphorous up to 16% over the un-inoculated control plots. This investigation demonstrated the potential use of the selected consortium of Streptomyces strains in the farmers' fields to improve the chickpea yields and soil fertility.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Vadlamudi Srinivas
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Uttam Chand
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Sambangi Pratyusha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Srinivas Samineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| |
Collapse
|
8
|
Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize. Microorganisms 2022; 10:microorganisms10091850. [PMID: 36144452 PMCID: PMC9505285 DOI: 10.3390/microorganisms10091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Maize is an important cereal crop which is severely affected by Spodoptera frugiperda. The study aims to identify endophytic bacteria of maize root and leaf apoplastic fluid with bioprotective traits against S. frugiperda and plant growth promoting properties. Among 15 bacterial endophytic isolates, two strains—namely, RAF5 and LAF5—were selected and identified as Alcaligenes sp. MZ895490 and Bacillus amyloliquefaciens MZ895491, respectively. The bioprotective potential of B. amyloliquefaciens was evaluated through bioassays. In a no-choice bioassay, second instar larvae of S. frugiperda fed on B. amyloliquefaciens treated leaves (B+) recorded comparatively lesser growth (1.10 ± 0.19 mg mg−1 day−1) and consumptive (7.16 ± 3.48 mg mg−1 day−1) rates. In larval dip and choice bioassay, the same trend was observed. In detached leaf experiment, leaf feeding deterrence of S. frugiperda was found to be greater due to inoculation with B. amyloliquefaciens than Alcaligenes sp. The phenolics content of B. amyloliquefaciens inoculated plant was also found to be greater (3.06 ± 0.09 mg gallic acid g−1). However, plant biomass production was more in Alcaligenes sp inoculated treatment. The study thus demonstrates the potential utility of Alcaligenes sp. and B. amyloliquefaciens for improving growth and biotic (S. frugiperda) stress tolerance in maize.
Collapse
|
9
|
Yahya M, Rasul M, Sarwar Y, Suleman M, Tariq M, Hussain SZ, Sajid ZI, Imran A, Amin I, Reitz T, Tarkka MT, Yasmin S. Designing Synergistic Biostimulants Formulation Containing Autochthonous Phosphate-Solubilizing Bacteria for Sustainable Wheat Production. Front Microbiol 2022; 13:889073. [PMID: 35592004 PMCID: PMC9111743 DOI: 10.3389/fmicb.2022.889073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Applying phosphate-solubilizing bacteria (PSB) as biofertilizers has enormous potential for sustainable agriculture. Despite this, there is still a lack of information regarding the expression of key genes related to phosphate-solubilization (PS) and efficient formulation strategies. In this study, we investigated rock PS by Ochrobactrum sp. SSR (DSM 109610) by relating it to bacterial gene expression and searching for an efficient formulation. The quantitative PCR (qPCR) primers were designed for PS marker genes glucose dehydrogenase (gcd), pyrroloquinoline quinone biosynthesis protein C (pqqC), and phosphatase (pho). The SSR-inoculated soil supplemented with rock phosphate (RP) showed a 6-fold higher expression of pqqC and pho compared to inoculated soil without RP. Additionally, an increase in plant phosphorous (P) (2%), available soil P (4.7%), and alkaline phosphatase (6%) activity was observed in PSB-inoculated plants supplemented with RP. The root architecture improved by SSR, with higher root length, diameter, and volume. Ochrobactrum sp. SSR was further used to design bioformulations with two well-characterized PS, Enterobacter spp. DSM 109592 and DSM 109593, using the four organic amendments, biochar, compost, filter mud (FM), and humic acid. All four carrier materials maintained adequate survival and inoculum shelf life of the bacterium, as indicated by the field emission scanning electron microscopy analysis. The FM-based bioformulation was most efficacious and enhanced not only wheat grain yield (4-9%) but also seed P (9%). Moreover, FM-based bioformulation enhanced soil available P (8.5-11%) and phosphatase activity (4-5%). Positive correlations were observed between the PSB solubilization in the presence of different insoluble P sources, and soil available P, soil phosphatase activity, seed P content, and grain yield of the field grown inoculated wheat variety Faisalabad-2008, when di-ammonium phosphate fertilizer application was reduced by 20%. This study reports for the first time the marker gene expression of an inoculated PSB strain and provides a valuable groundwork to design field scale formulations that can maintain inoculum dynamics and increase its shelf life. This may constitute a step-change in the sustainable cultivation of wheat under the P-deficient soil conditions.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Department of Environment and Energy, Sejong University, Seoul, South Korea
| | - Yasra Sarwar
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Suleman
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- School of Life Sciences, Institute of Microbiology, Lanzhou University, Lanzhou, China
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Zahid Iqbal Sajid
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Thomas Reitz
- Soil Ecology Department, UFZ-Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tapio Tarkka
- Soil Ecology Department, UFZ-Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
10
|
Effects of Abiotic Stress on Soil Microbiome. Int J Mol Sci 2021; 22:ijms22169036. [PMID: 34445742 PMCID: PMC8396473 DOI: 10.3390/ijms22169036] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
Collapse
|
11
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|